Abstract Machines of Systems Biology

Luca Cardelli

Microsoft Research Cambridge UK

2005-06-12..16 Dobbiaco

www.luca.demon.co.uk/BioComputing.htm

50 Years of <u>Molecular Cell Biology</u>

- Genes are made of DNA
 - Store digital information as sequences of 4 different nucleotides
 - Direct protein assembly through RNA and the Genetic Code
- Proteins (>10000) are made of amino acids
 - Process signals
 - Activate genes
 - Move materials
 - Catalyze reactions to produce substances
 - Control energy production and consumption
- Bootstrapping still a mystery
 - DNA, RNA, proteins, membranes are today interdependent. Not clear who came first
 - Separation of tasks happened a long time ago
 - Not understood, not essential

Towards <u>Systems Biology</u>

- Biologists now understand many of the cellular components
 - A whole team of biologists will typically study a single protein for years
 - Reductionism: understand the components in order to understand the system
- But this has not led to understand how "the system" works
 - Behavior comes from complex patterns of interactions between components
 - Predictive biology and pharmacology still rare
 - Synthetic biology still unreliable
- New approach: try to understand "the system"
 - Experimentally: massive data gathering and data mining (e.g. Genome projects)
 - Conceptually: modeling and analyzing networks (i.e. interactions) of components
- What kind of a system?
 - Just beyond the basic chemistry of energy and materials processing...
 - Built right out of digital information (DNA)
 - Based on information processing for both survival and evolution
 - Highly concurrent
- Can we fix it when it breaks?
 - Really becomes: How is information structured and processed?

Bioinformatics: storing and analyzing experimental data.

Molecular Biology: figuring out the components of living things.

Systems Biology: figuring out their connectivity.

Storing Processes

- Today we represent, store, search, and analyze:
 - Gene sequence data
 - Protein structure data
 - Metabolic network data
 - Signaling pathway data

Cellular Abstractions: Cells as Computation Regev&Shapiro NATURE vol 419, 2002-09-26, 343

- How can we represent, store, and analyze *biological processes*?
 - Scalable, precise, dynamic, highly structured, maintainable representations for *systems biology*.
 - Not just huge lists of chemical reactions or differential equations.
- In computing...

...

- There are well-established scalable representations of dynamic reactive processes.
- They look more or less like little, mathematically based, programming languages.

Structural Architecture

(10~100 trillion in human body)

Membranes everywhere

Abstract Machines of Systems Biology

Reactive Systems

- Modeling biological systems
 - Not as continuous systems (often highly nonlinear)
 - But as discrete reactive systems; abstract machines with:
 - States represent situations
 - Event-driven transitions between states represent dynamics
 - The adequacy of describing (discrete) complex systems as reactive systems has been argued convincingly [Harel]
- Many biological systems exhibit features of reactive systems:
 - Deep layering of abstractions
 - Complex composition of simple components
 - Discrete transitions between states
 - Digital coding and processing of information
 - Reactive information-driven behavior
 - High degree of concurrency and nondeterminism
 - "Emergent behavior" not obvious from part list

Chemistry vs. π -calculus

Methods

- Model Construction (writing things down precisely)
 - Formalizing the notations used in systems biology.
 - Formulating modeling languages.
 - Studying their kinetics (semantics).
- Model Validation (using models for postdiction and prediction)
 - Simulation from compositional descriptions
 - Stochastic: quantitative concurrent semantics.
 - Hybrid: discrete transitions between continuously evolving states.
 - "Program" Analysis
 - Control flow analysis
 - Causality analysis
 - Modelchecking
 - Standard, Quantitative, Probabilistic

Basic Modeling Guidelines

• Regev-Shapiro: "Molecules as Processes":

Molecule	Process	
Interaction capability	Channel	
Interaction	Communication	
Modification (of chemical components)	State change (state-transition systems)	

Cellular Abstractions: Cells as Computation Regev&Shapiro NATURE vol 419, 2002-09-26, 343

- They chose π -calculus and adapted it with stochastic features
 - To match the stochastic aspects of (bio)chemistry
 - Many probabilistic process calculi predate them, but only Hillston (CSP) and Priami (π) had already studied stochastic calculi.

π -calculus Executive Summary

- It's for:
 - The modular description of concurrent, nondeterministic systems
 - Study of such systems based on their descriptions
- It's got:
 - Processes
 - Channels
 - A minimal syntax (it's a language and also a model)
- You can:
 - Fork new processes
 - Create new channels
 - Do I/O over channels (synchronous and asynchronous) including passing channels over channels
 - Make nondeterministic choices
 - Define processes recursively
- That's it.
 - Except for extensive model theory and metatheory.
 - Cannot pass processes over channels (simulated by passing channels to them)
 - Cannot define procedures (simulated by supplying reply channels)

π -calculus (a Process Algebra)

- Processes P,Q,... components of a system
- Channels a,b,... interactions between components

0 !a(b); P ?a(x); P P Q P + O	the process that does nothing the process that outputs b on channel a (and then does P) the process that inputs b on channel a (and then does P{x}) the process made of subprocesses P and Q running concurrently the process that behaves like either P or Q nondeterministically
	The process that behaves like either ror & nonderer ministically
*P	the process that behaves like unboundedly many copies of P => recursive processes => unbounded number and species of processes
new x; P	the process that creates a new channel x (and then does P{x}) => private interactions => unbounded number and species of interactions

π -calculus (a Process Algebra)

• Dynamics

(<u>la(b);</u> P) + P'	(?a(x	<u><);</u> Q{x}) + Q'	\rightarrow	P Q{b}
Ex.		!a(b); ?b	?	a(x); (!x + ?b)
	\rightarrow	?b	!b	+ ?b
	\rightarrow	0	0	
	=	0		

- "Compositional" descriptions
 - Describe how the individual components behave
 - i.e. how they interact with any environment they may be placed in
 - Build systems by combining components
 - each components is part of the environment for the other components
 - Behavior (and its analysis) arises from the combinatorics of interactions
 - state space can be arbitrarily larger than its compositional description
- For concurrent, nondeterministic, unbounded-state systems
 - Dynamic creation of new channels (e.g. binding sites)
 - Dynamic creation of new processes (e.g. proteins)

π -calculus

Syntax

 $\begin{array}{rcl} \pi & ::= & x(y) & \operatorname{receive} y \text{ along } x \\ & \overline{x} \langle y \rangle & \operatorname{send} y \text{ along } x \end{array}$

$$P ::= 0 | \sum_{i \in I} \pi_i P_i | [x = y] P | P_1 | P_2 | (\text{new } x)P | !P$$

Structural congruence

Renaming of bound variables

 $\begin{array}{rcl} x(y).P &=& x(z).(\{z/y\}\,P) & \text{ if } z \notin FN(P) \\ (\mathsf{new}\ y).P &=& (\mathsf{new}\ z).(\{z/y\}\,P) & \text{ if } z \notin FN(P) \end{array}$

Structural congruence laws

$$\begin{array}{rcl} P|Q &\equiv& Q|P\\ (P|Q)|R &\equiv& P|(Q|R)\\ P+Q &\equiv& Q+P\\ (P+Q)+R &\equiv& P+(Q+R)\\ (\mathrm{new}\;x)0 &\equiv& 0\\ (\mathrm{new}\;x)(\mathrm{new}\;y)P &\equiv& (\mathrm{new}\;y)(\mathrm{new}\;x)P\\ ((\mathrm{new}\;x)P)|Q) &\equiv& (\mathrm{new}\;x)(P|Q) & \text{ if }x\notin FN(Q)\\ & & !P &\equiv& P|!P \end{array}$$

commutativity of parallel composition associativity of parallel composition commutativity of summation associativity of summation restriction of inert processes polyadic restriction scope extrusion replication

Reaction rules

$$\begin{array}{ll} (\cdots + \overline{x} \langle z \rangle.Q) | (\cdots + x(y).P) \rightarrow Q | P \{ z/y \} & \text{communication (COMM)} \\ & \hline P \rightarrow P' \\ \hline P | Q \rightarrow P' | Q & \text{reaction under parallel composition (PAR)} \\ & \hline \frac{P \rightarrow P'}{(\mathsf{new} \; x)P \rightarrow (\mathsf{new} \; x)P'} & \text{reaction under restriction (RES)} \\ & \hline Q \equiv P \; P \rightarrow P' \; P' \equiv Q' \\ & \hline Q \rightarrow Q' & \text{structural congruence (STRUCT)} \end{array}$$

Syntax

Chemical

Reactions

Mixing

Stochastic π -calculus Executive Summary

- A simple variant of π -calculus:
 - Channels have stochastic "firing" rates with exponential distribution.
 - Nondeterministic choice becomes *stochastic race*.
 - Cuts down to CTMCs (Continuous Time Markov Chains) in the finite case (not always). Then, standard analytical tools are applicable.
 - Can be given friendly automata-like scalable graphical syntax (work in progress: Andrew Phillips).
 - Is directly executable (e.g. via the Gillespie algorithm from physical chemistry).
 - Is analyzable (large body of literature, at least in the non-stochastic case).

Figure 2. Regulating Gene Expression by Positive Feedback [9]

Figure 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF A.Phillips, L.Cardelli. BioConcur'04.

Stochastic π -calculus

- Stochastic extension of π -calculus. [C.Priami]
 - Associate a single parameter r (rate) in (0, infinity] to each activity a.
 - The rate and the associated exponential distribution describes the stochastic behavior of the activity.

a.P is replaced by a@r.P

- Exponential distribution
 - guarantees the memoryless property: the time at which a change of state occurs is independent of the time at which the last change of state occurred.

• Race condition

- is defined in a probabilistic competitive context: all the activities that are enabled in a state compete and the fastest one (stochastically) succeeds.
- New implementation: SPiM. [A.Phillips]. Paper at BioConcur

Stochastic Approach

- Relatively recent development on Process Calculi
 - For computer networking simulation and analysis
 - Now for biochemical simulation and analysis
- Continuous Time Markov Chains
 - Finite State Machines, with state transition times exponentially distributed (memoryless)
 - Well studied class of stochastic processes
 - Efficient analysis algorithms for stationary and transient analysis
- High level formalisms mapping to CTMCs
 - Stochastic Petri Nets [Molloy]
 - Markovian Queuing Networks [Muppala & Triverdi]
 - Stochastic Automata Networks [Plateau]
 - Probabilistic I/O Automata [Wu et al.]
 - Stochastic Process Algebras [Herzog et al.] [Hillston]

Importance of Stochastic Effects

- A deterministic system:
 - May get "stuck in a fixpoint".
 - And hence never oscillate.
- A similar stochastic system:
 - May be "thrown off the fixpoint" by stochastic noise, entering a long orbit that will later bring it back to the fixpoint.
 - And hence oscillate.

Surprisingly enough, we

have found that parameter values that give rise to a stable steady state in the deterministic limit continue to produce reliable oscillations in the stochastic case, as shown in Fig. 5. Therefore, the presence of noise not only changes the behavior of the system by adding more disorder but can also lead to marked qualitative differences.

Mechanisms of noiseresistance in genetic oscillators

Jose' M. G. Vilar, Hao Yuan Kueh, Naama Barkai, Stanislas Leibler PNAS April 30, 2002 vol. 99 no. 9 p.5991

Fig. 6. Phase portrait as in Fig. 4 but for a situation in which the system falls into the stable fixed point (R_{0} , C_{0}). The dotted arrow to the left of the fixed point illustrates a perturbation that would initiate a single sweep of the (former) oscillatory trajectory.

Protein Networks

1. The Protein Machine

- Complex folded-up shapes that:
 - Fit together, dock, undock.
 - Excite/unexcite, warp each other.
 - Bring together, catalyze, transform materials.
 - Form complex aggregates and networks.

- Mapping out such networks:
 - In principle, it's "just" a very large set of chemical equations.
 - Notations have been developed to summarize and abstract.

An actual molecular interaction network. (Nodes are distinct protein kinds, arcs mean that two kinds of proteins interact.)

Very close to

the atoms.

Protein Structure

Primary

The 20 Aminoacids

Tryptophan

Secondary

Alpha Helix, Beta Sheet

Tertiary

Green Fluorescent Protein

Quaternary

Triose Phosphate Isomerase

Some Allosteric Switches

Domain architecture and autoinhibitory interactions in modular switch proteins. (a) Src family kinases contain N-terminal SH3 and SH2 domains, and a kinase domain flanked by intramolecular SH3-binding and SH2-binding sites (when the C-terminal motif tyrosine is phosphorylated by Csk). The crystal structures of several family members show that both intramolecular domain interactions function in concert to lock the kinase in an inactive conformation. Activating stimuli (red) include external SH2 or SH3 ligands. After initial activation, the kinase is maintained in an active state by autophosphorylation of its activation loop. (b) SHP-2 phosphatase contains two SH2 domains and a phosphatase domain. The crystal structure of the phosphatase

shows that the N-terminal SH2 domain participates in an autoinhibitory interaction that directly blocks the phosphatase active site. Binding of external SH2 ligands activates by disrupting the autoinhibitory interaction. (c) N-WASP contains an Enabled VASP homology 1 (EVH1) domain, a B motif, a GBD, a proline-rich segment (pro) and an output region (VCA) that alone binds the Arp2/3 complex and stimulates its actin nucleation activity. The B and GBD motifs are required to repress activity and, by current models, are thought to participate in intracomplex interactions (only the structure of the GBD intramolecular complex for WASP is known). GTP-bound Cdc42 and PIP₂ synergistically activate N-WASP.

that deactivates a protein.

Humans have the same number of modular protein domains (building blocks) as worms, but twice the number of multi-domain proteins.

MIM: Molecular Interaction Maps (Kohn)

๎๎≜↔®	The double-arrowed line indicates that proteins A and B can bind to each other. The "node" placed on the line	(A) → ®	Stoichiometric conversion of A into B.
() ← ≫ (B)	represents the A:B complex. Asymmetric binding where protein A donates a peptide that binds to a receptor site or pucket on protein B.	Cytosol nucleus	Transport of A from cytosol to nucleus. The node represents A after it has been transported into the nucleus.
⊗ <≩> ®	Representation of multimolecular complexes: x is A:B; y is (A:B):C. This notation is extensible to any number of components in a complex.	<u>(</u> هجب	Formation of a homodimer. Filled circle on the right represents another copy of A . The node on the line represents the homodimer A : A .
© ₽>-®	Covalent modification of protein A. The single-arrowed line indicates that A can exist in a phosphorylated state. The node represents the phosphorylated species.	x z y	z is the combination of states defined by x and y . Enzymatic stimulation of a reaction.
Ph'tasc V	Cleavage of a covalent bond: dephosphorylation of A by a phosphatase.	Å∆ 1	General symbol for stimulation. A bar behind the arrowhead signifies necessity. General symbol for inhibition.
) Proteolytic cleavage at a specific site within a protein.	י איר היר	Shorthand symbol for transcriptional activation. Shorthand symbol for transcriptional inhibition.
		Ø	Degradation products Taken from

Taken from Kurt W. Kohn

Molecular Interaction Maps

http://www.cds.caltech.edu/~hsauro/index.htm

The p53-Mdm2 and DNA Repair Regulatory Network

Kohn Diagrams

FIG. 3. Simple one-way enzymatic reaction. (If there is an energy source, such as ATP hydrolysis, it can be omitted when ATP concentration is not an important factor.) In explicit formulations, the reaction identifiers or rate constant designations can be placed on the enzyme reaction line, and the node ES can identify the enzyme-substrate species.

FIG. 4. Interconversions between the GTP- and GDP-bound states of Ras. (1) GDP and GTP compete with each other for binding to a site on Ras (this binding is only slowly reversible). (2) GEF (guarnine nucleotide exchange factor) facilitates the binding or dissociation of GDP or GTP (the concentration of GTP normally far exceeds that of GDP). (Implicit is the reversible binding between GEF and Ras which opens the binding site for GDP/GTP exchange.) (3) Ras has an intrinsic GTPase activity that slowly converts bound GTP to bound GDP (stoichiometric conversion arrow points from the node representing Ras.GTP to the node representing Ras.GDP). (4) RasGAP (a GTPase activating protein) enhances the GTPase activity of Ras. (Implicit is the reversible enzyme–substrate binding between RasGAP and Ras.)

Kitano Diagrams

Figure 1. Representation of fission yeast Cdc2 protein in (a) the original MIM and (b) proposed improvements. Both diagrams represent interactions involving fission yeast Cdc2. Weel phosphorylates Thr14 and Tyr15, Mik1 phosphorylates Tyr15, Mcs6 phosphorylates Thr167, and Cdc25 dephosphorylates Thr14 and Tyr15. Cdc2 binds to either Cdc13, Cig1, or Cig2. When Cdc2 is forming a complex with Cdc13 and only Thr167 is phosphorylated, the complex interacts with Lamina. Phosphorylation of either Thr14 or Tyr15 inhibits activation of Cdc2 due to phosphorylates Tyr167. The complex auto-phosphorylates Tyr15 of its Cdc2. The complex of Cdc2 and Cig1 interacts with Rum1. Cdc2-Cdc13 complex and Cdc-Cig2 complex form heterotrimers involving Rum1.

The Protein Machine "Instruction Set"

Switching of accessible switches.

- May cause other switches and

binding sites to become (in)accessible.

- May be triggered or inhibited by nearby specific proteins in specific states.

Binding on accessible sites.

- May cause other switches and

binding sites to become (in)accessible.

- May be triggered or inhibited by nearby specific proteins in specific states.

Notations for the Protein Machine

- Stochastic π -Calculus
 - Priami (following Hillston's PEPA) formalizes a stochastic version of p-calculus where channels have communication *rates*.
- BioSPi
 - Regev-Shapiro-Silverman propose modeling chemical interactions (exchange of electrons and small molecules) as "communication".
 - Standard stochastic simulation algorithms (Gillespie) can be used to run in-silico experiments.
 - Complex formation is encoded via p-restriction.
- PEPA
 - Calder Gilmore and Hillston model the ERK pathway.
- k-calculus
 - Danos and Laneve (following Kitano's BioCalculus) define a calculus where complex formation is primitive.
- (Stochastic) Petri Nets
 - S.Reddy'94 modeling pathways.
 - Srivastava Perterson and Bentley analyze and simulate E.coli stress response circuit.

- Bio State Charts
 - Harel uses State Charts to model biological interactions via a semi-graphical FSM notation.
- Pathway Logic
 - Talcott-Eker-Knapp-Lincoln use term-rewriting.
- BioCham
 - ChabrierRivier-Fages-Soliman use term-rewriting and CLT modelchecking.
- Kohn Diagrams, Kitano Diagrams
- SBML (Systems Biology Markup Language)
 - XML dialect for MIM's:
 - Compartments (statically nested)
 - Reagents with concentrations
 - Reactions with various rate laws
 - Read and written by many tools via the Systems Biology Workbench protocol

François & Hakim

Design of genetic networks with specified functions by evolution in silico P. François, V. Hakim, Proc. Natl. Acad. Sci. USA, (101)2, 580-585, 2004.

Reactions	Constants	Stability
$a \rightarrow a + A$	0.20	0.9 - 1.4
A \rightarrow Nothing	0.0085	0.0-1.5
$b \rightarrow b+B$	0.37	0.7-1.3
$B \rightarrow Nothing$	0.034	0.0-8.9
$A+B\rightarrow A:B$	0.72	0.1 - > 10
$A:B \rightarrow Nothing$	0.53	Irrelevant
$b + A \rightarrow b:A$	0.19	0.7-7.6
$b: A \rightarrow b+A$	0.42	0.2-1.5
$b: A \rightarrow b: A+B$	0.027	0.0-2.3

Fig 3A

François & Hakim 3A

rates dkA ≜ 0.0085 dkB ≜ 0.034 dkAB \triangleq 0.53 pntAunb \triangleq 0.42 geneACst ≜ 0.20 geneBCst ≜ 0.37 geneBInh ≜ 0.027 new bA @ 0.19 new AB @ 0.72

ptnB() ≜ Interaction	deexede
^τ _{@dkB} + ?AB; cp×AB()	complex with prot A
ptnA() ≜	
	degrade
+ ind + new unboundary	bind to gene b
<pre>!bA(unb); ?unb; ptnA()</pre>	
cp×AB() ≜ τ _{@dkAB}	degrade
geneA() $\triangleq \tau_{@geneACst}$; (ptnA() geneA())	constit. make prot A
geneBfree() ≜	
τ _{@geneBCst} ; (ptnB() geneBfree()) + ?bA(unb); geneBbound(unb)	constit. make prot B bind to prot A (inhibit)
geneBbound(unb) ≜	

 $\tau_{@geneBInh}$; (ptnB() | geneBbound(unb)) inhib. make prot B unbind from prot A

1 gene a and 1 gene b geneA() | geneBfree()

+ !unb; geneBfree()

One State of the Simulation

François & Hakim 3A in SPiM

(* Francois and Hakim circuit 3A *)

val pntAunb = 0.42 val geneACst = 0.20 val geneBCst = 0.37 val geneBInh = 0.027 val dkA = 0.0085 val dkB = 0.034 val dkAB = 0.53 new bA @ 0.19 new AB @ 0.72

let	ptnA() =			Interaction
	do delay@dkA	degrade		oriented
	or !AB	complex with p	rot B	orionioa
	or (new unb@pntAunb	bind to gene b		
	<pre>!bA(unb);(?unb; ptnA()</pre>))		
let	ptnB() =			
	do delay@dkB	degrade		
	or ?AB;cpxAB()	complex with p	rot A	
let	cpxAB() = delay@dkAB	degrade		
let	geneA() =			
	<pre>delay@geneACst; (ptnA() g</pre>	eneA())	constit	. make prot A
let	<pre>geneBfree() =</pre>			
	<pre>do delay@geneBCst; (ptnB()</pre>	<pre>geneBfree())</pre>	constit	. make prot B
	<pre>or ?bA(unb); geneBbound(unb</pre>)	bind to	prot A (inhibit)
and	<pre>geneBbound(unb:ch()) =</pre>			
	<pre>do delay@geneBInh; (ptnB()</pre>	geneBbound(un	<mark>b))</mark> inhi	b. make prot B
	<pre>or !unb; geneBfree()</pre>		unbi	nd from prot A
run	(geneA() geneBfree())	1 gene a a	nd 1 gen	e b

François & Hakim Fig3A, SPiM simulation

Parameters as in paper

3 copies of each gene.

Modified for stability: dkA = 0.02, dkB = 0.02

François & Hakim Fig3Ast8

Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Graphical Representation

• <Slides by Andrew Phillips>
MAPK Cascade

<u>Ultrasensitivity in the mitogen-activated protein cascade</u>, Chi-Ying F. Huang and James E. Ferrell, Jr., 1996, <u>Proc. Natl. Acad. Sci. USA</u>, 93, 10078-10083.

Biochemistry: Huang and Ferrell	Proc. Natl. Acad. Sci. USA 93 (1996)						
Table 2. Predicted Hill coefficients for MAP kinase cascade components: Varying the assumed Km values							
	Dense of anyond K	Range of effective Hill coefficients (nH)					
Reaction	values	MAPKKK	MAPKK	MAPK			
1. MAPKKK \rightarrow MAPKKK*	60–1500 nM	1.0	1.7	4.9			
2. MAPKKK* \rightarrow MAPKKK	60 1500 nM	1.0	1.7	4.9			
3. MAPKK \rightarrow MAPKK-P	60–1500 nM	1.0	1.3-2.3	4.0 - 5.1			
4. MAPKK-P \rightarrow MAPKK	60–1500 nM	1.0	1.5-1.9	3.6 - 6.7			
5. MAPKK-P \rightarrow MAPKK-PP	60–1500 nM	1.0	1.3-2.4	3.8-5.2			
6. MAPKK-PP \rightarrow MAPKK-P	60–1500 nM	1.0	1.7 - 1.8	4.1-6.4			
7. MAPK \rightarrow MAPK-P	60–1500 nM (300 nM [†])	1.0	1.7	3.7-6.2			
8. MAPK-P \rightarrow MAPK	60-1500 nM	1.0	1.7	4.3-5.2			
9. MAPK-P \rightarrow MAPK-PP	60–1500 nM	1.0	1.7	3.4 - 6.1			
10. MAPK-PP \rightarrow MAPK-P	60–1500 nM	1.0	1.7	4.7-5.1			

The assumed K_m values for each reaction were individually varied over the ranges shown, with the assumed K_m values for the other nine reactions held constant. The effective Hill coefficients were calculated from the steepness of the predicted stimulus/response curves, as described in the text.

[†]The K_m value for reaction 7 has been measured to be 300 nM for the phosphorylation of a mammalian MAPK by a MAPKK (N. Ahn, personal communication). All of the other K_m values were initially assumed to be 300 nM as well.

de

KK-P + KK P'ase

[6]

Calculations. Eqs. 1-10 represent the reactions of the MAPK cascade, which are shown schematically in Fig. 1. We have used Goldbeter and Koshland's nomenclature for the rate constants the letter a denotes association, d denotes dissociation without catalysis, and k denotes product formation (11). KKK denotes MAPKKK: KK denotes MAPKK; and K denotes MAPK.

KKK + EI
$$\stackrel{a_1}{\longleftrightarrow}$$
 KKK·EI $\stackrel{k_1}{\longrightarrow}$ KKK + E1[1]KK-PP + K $\stackrel{a_7}{\longleftrightarrow}$ KK-PP + K $\stackrel{k_7}{\longrightarrow}$ KK-PP + K-P[7]KKK + E2 $\stackrel{a_2}{\longleftrightarrow}$ KKK·E2 $\stackrel{k_2}{\longrightarrow}$ KKK + E2[2]K-P + K P'ase $\stackrel{a_8}{\leftrightarrow}$ K-P + K P'ase[8]KK + KKK * $\stackrel{a_3}{\rightrightarrows}$ KK·KKK * $\stackrel{k_3}{\rightarrow}$ KK-P + KKK*[3]K-P + K P'ase $\stackrel{a_8}{\leftrightarrow}$ K-P + K P'ase[8]KK-P + KK P'ase $\stackrel{a_4}{\rightarrow}$ KK + KK P'ase[4]K-P + K P'ase $\stackrel{a_9}{\leftrightarrow}$ K-P + K P'ase[9]KK-P + KKK* $\stackrel{a_5}{\rightarrow}$ KK-PKK*[4]K-PP + K P'ase $\stackrel{a_{10}}{\leftrightarrow}$ KK-PP + K P'ase[10]KK-P + KKK* $\stackrel{a_5}{\leftrightarrow}$ KK-PKKK*[5] $\stackrel{k_{10}}{\rightarrow}$ K-P + K P'ase[10]

10 chemical

reactions

MAPKKK*

INPUT (E1)

E2

МАРККК 🧲

FIG. 1. Schematic view of the MAPK cascade. Activation of MAPK depends upon the phosphorylation of two conserved sites [Thr-183 and Tyr-185 in rat p42 MAPK/Erk2 (4, 5)]. Full activation of MAPKK also requires phosphorylation of two sites [Ser-218 and Ser-222 in mouse Mek-1/MKK1 (6–10)]. Detailed mechanisms for the activation of various MAPKKKs (e.g., Raf-1, B-Raf, Mos) are not yet established; here we assume that MAPKKKs are activated and inactivated by enzymes we denote E1 and E2. MAPKKK* denotes activated MAPKKK. MAPKK-P and MAPKK-PP denote singly and doubly phosphorylated MAPKK, respectively. MAPK-P and MAPK-PP denote singly and doubly phosphorylated MAPK. P'ase denotes phosphatase.

As 18 Ordinary Differential Equations Plus 7 conservation equations

$\frac{d}{dt}[KKK] = -a_1[KKK][E1] + d_1[KKK \cdot E1]$				
+ $k_2[KKK^* \cdot E2]$	[11]			
$\frac{d}{dt}[KKK\cdot E1] = a_1[KKK][E1] - (d_1 + k_1)[KKK\cdot E1]$	[12]			
$\frac{\mathrm{d}}{\mathrm{d}t}[\mathrm{KKK}^*] = -a_2[\mathrm{KKK}^*][\mathrm{E2}] + d_2[\mathrm{KKK}^*\cdot\mathrm{E2}]$ $+ k_1[\mathrm{KKK}\cdot\mathrm{E1}] + (k_3 + d_3)[\mathrm{KK}\cdot\mathrm{KKK}^*] - a_2[\mathrm{KKK}^*]$	[<i>KK</i>]			
+ $(k_5 + d_5)[KK - P \cdot KKK^*] - a_5[KK - P][KKK^*]$	[13]			
$\frac{d}{dt}[KKK^{*}E2] = a_2[KKK^{*}][E2] - (d_2 + k_2)[KKK^{*}E2]$] [14]			
$\frac{d}{dt}[KK] = -a_3[KK][KKK^*] + d_3[KK \cdot KKK^*]$				
+ $k_4[KK-P \cdot KK P'ase]$	[15]			
$\frac{d}{dt}[KK \cdot KKK^*] = a_3[KK][KKK^*]$				
$- (d_3 + k_3)[KK \cdot KKK^*]$	[16]			
$\frac{d}{dt}[KK-P] = -a_4[KK-P][KK P'ase] + d_4[KK-P\cdot KK P'ase] + k_5[KK \cdot KKK^*] + k_5[KK-PP \cdot KK P'ase]$	ise]			
+ $d_{5}[KK-P \cdot KKK^{*}] - a_{5}[KK-P][KKK^{*}]$	[17]			
+ $d_{5}[KK-P \cdot KKK^{*}] - a_{5}[KK-P][KKK^{*}]$	[17]			
$\frac{d}{dt} [KK-P\cdot KK P'ase] = a_4 [KK-P] [KK P'ase]$				
$- (d_4 + k_4)[KK-P \cdot KK P'ase]$	[18]			
$\frac{d}{dt}[KK-P\cdot KKK^*] = a_5[KK-P][KKK^*]$				
$- (d_5 + k_5)[KK - P \cdot KKK^*]$	[19]			
$\frac{d}{dt}[KK-PP] = k_5[KK-P\cdot KKK^*] - a_6[KK-PP][KK P'ase$]			
$+ d_6[KK-PP \cdot KK P'ase] - a_7[KK-PP]$	[K]			
+ $(d_7 + k_7)[K \cdot KK - PP]$				
+ $(d_9 + k_9)[K - P \cdot KK - PP]$				
$- a_{9}[K-P][KK-PP]$	[20]			
$\frac{d}{dt}[KK-PP\cdot KK P'ase] = a_6[KK-PP][KK P'ase]$				
- (d ₆ + K ₆)[KK-PP•KK P'ase]	[21]			
$\frac{\mathrm{d}}{\mathrm{d}t} [\mathrm{K}] = -a_7 [\mathrm{K}] [\mathrm{K}\mathrm{K}\mathrm{-}\mathrm{P}\mathrm{P}] + \mathrm{d}_7 [\mathrm{K}\mathrm{\cdot}\mathrm{K}\mathrm{K}\mathrm{-}\mathrm{P}\mathrm{P}]$				
+ $k_8[K \cdot P \cdot K P' ase]$	[22]			
$\frac{\mathrm{d}}{\mathrm{d}t} \left[\mathrm{K} \cdot \mathrm{K} \mathrm{K} \cdot \mathrm{PP} \right] = \mathrm{a}_7 [\mathrm{K}] [\mathrm{K} \mathrm{K} \cdot \mathrm{PP}] - (\mathrm{d}_7 + \mathrm{k}_7) [\mathrm{K} \cdot \mathrm{K} \mathrm{K} \cdot \mathrm{PP}]$?] [23]			

$\frac{d}{dt}[K-P] = k_7[K\cdot KK-PP] - a_8[K-P][KP'ase] + d_5[K-PP] - a_8[K-P][KK-PP]$				
+ $d_9[K-P \cdot KK-PP]$ + $k_{10}[K-PP \cdot KP'ase]$	[24]			
$\frac{d}{dt} [K-P \cdot K P' ase] = a_8 [K-P] [K P' ase]$				
$- (d_3 + k_3)[K-P \cdot K P' ase]$	[25]			
$\frac{d}{dt}[K-P\cdot KK-PP] = a_9[K-P][KK-PP]$				
$- (d_9 + k_9)[K-P \cdot KK-PP]$	[26]			
$\frac{d}{dt}[K-PP] = -a_{10}[K-PP][K P'ase]$				
+ $d_{10}[K-PP \cdot KP'ase]$ + $k_9[K-P \cdot KK-PP]$	[27]			
$\frac{d}{dt}[K-PP\cdot K P'ase] = a_{10}[K-PP][K P'ase]$				
$- (d_{10} + k_{10})[K - PP \cdot K P' ase]$	[28]			
	_			
$[E1_{tot}] = [E1] + [KKK \cdot E1]$	[30]			
$[E2_{tot}] = [E2] + [KKK^* \cdot E2]$	[31]			
$[KK_{tot}] = [KK] + [KK-P] + [KK-PP] + [KK-KK]$	<*]			
+ $[KK-P \cdot KKK^*]$ + $[KK-P \cdot KK P'as$	e]			
+ $[KK-PP \cdot KK P'ase]$				
$+ [KK-PP \cdot K] + [KK-PP \cdot K-P]$	[32]			
$[KK P'ase_{tot}] = [KK P'ase] + [KK P'ase*KK-P]$				
+ $[KK P'ase \cdot KK-PP]$	[33]			
$[K_{tot}] = [K] + [K-P] + [K-PP] + [KK-PP \cdot K]$				
+ $KK-PP \cdot K-P$] + $[K-P \cdot KP'ase]$ + $[K-PP \cdot KP'ase]$	[34]			
$[K P'ase_{tot}] = [K P'ase] + [K-P \cdot K P'ase]$				
+ $[K-PP \cdot K P'ase]$	[35]			
These equations were solved numerically using the Runge– Kutta-based NDSolve algorithm in Mathematica (Wolfram Research, Champaign, IL). An annotated copy of the Math- ematica code for the MAPK cascade rate equations can be obtained from J.E.F.				

The 10 reactions described above give rise to 18 rate equations.

In addition, there are seven conservation equations (Eqs. 29-35).

$$[KKK_{tot}] = [KKK] + [KKK^*] + [KKK \cdot E1] + [KKK^* \cdot E2] + [KKK^* \cdot K] + [KKK^* \cdot K \cdot P]$$
in exactly one state
Each molecule
$$Each molecule$$

The Circuit

Enzymatic Reactions

Reaction View

private bindings between one S and one E molecule $S() \triangleq new u@d new k@e$ $|a_c(u,k); (!u_d; S() + !k_e; P())$ bind unbind react $E() \triangleq ?a_c(u,k); (?u_d; E() + ?k_e; E())$ $P() \triangleq ...$

MAPK Cascade in SPiM

let KKK() =		and KK_PP() =	
(new u1@d1:Release new k1@r1:React		(new u6@d6:Release new k6@r6:React	
!a1(u1,k1); (do !u1;KKK() or !k1;KKKst()))	[1]substrate	do !a6(u6,k6); (do !u6;KK_PP() or !k6;KK_P())	[6]substrate
KKK:E1 complex and KKKst() = (new u2@d2:Release new k2@r2:React do !a2(u2,k2); (do !u2;KKKst() or !k2;KKK()) or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst()) or ?a5(u5,k5); (do ?u5;KKKst() or ?k5;KKKst()))	[2]substrate [3]kinase [5]kinase	or ?a7(u7,k7): (do ?u7.VV pp() or ?l.7.VV pp()) or ?a9(u9,k9): and KKPse() = do ?a4(u4,k4); or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse())	[7]kinase [9]kinase [4]phtase [6]phtase
<pre>let E1() = ?a1(u1,k1); (do ?u1;E1() or ?k1;E1()) let E2() = E1:KKK complex</pre>	[1]enzyme	<pre>let K() = No need for conservation (new u7@ equations: implicit in "choice" !a7(u7,k7)operator in the calculus.</pre>	[7]substrate
?a2(u2,k2); (do ?u2;E2() or ?k2;E2())	[2]enzyme	and K_P() =	
let KK() = (new u3@d3:Release new k3@r3:React !a3(u3,k3); (do !u3;KK() or !k3;KK_P()))	[3]substrate	(new u8@d8:Release new k8@r8:React new u9@d9:Release new k9@r9:React do !a8(u8,k8); (do !u8;K_P() or !k8;K()) or !a9(u9,k9); (do !u9;K_P() or !k9;K_PP()))	[8]substrate [9]substrate
and KK P() =		and K PP() =	
(new u4@d4:Release new k4@r4:React new u5@d5:Release new k5@r5:React do !a4(u4,k4); (do !u4;KK_P() or !k4;KK())	[4]substrate	(new u10@d10:Release new k10@r10:React !a10(u10,k10); (do !u10;K_PP() or !k10;K_P()))	[10]substrate
or !a5(u5,k5); (do !u5;KK_P() or !k5;KK_PP()))	[5]substrate	<pre>and KPse() = do ?a8(u8,k8); (do ?u8;KPse() or ?k8;KPse()) or ?a10(u10,k10); (do ?u10;KPse() or ?k10;KPse())</pre>	[8]phtase [10]phtase

type Release = chan()
type React = chan()
type Bond = chan(Release,React)

```
new a1@1.0:Bond val d1=1.0 val r1=1.0
new a2@1.0:Bond val d2=1.0 val r2=1.0
new a3@1.0:Bond val d3=1.0 val r3=1.0
new a4@1.0:Bond val d4=1.0 val r4=1.0
new a5@1.0:Bond val d5=1.0 val r5=1.0
new a6@1.0:Bond val d6=1.0 val r6=1.0
new a7@1.0:Bond val d7=1.0 val r7=1.0
new a8@1.0:Bond val d8=1.0 val r8=1.0
new a9@1.0:Bond val d9=1.0 val r9=1.0
new a10@1.0:Bond val d10=1.0 val r10=1.0
```

•••

run 100 of KKK() run 100 of KK() run 100 of K() run 1 of E2() run 1 of KKPse() run 1 of KPse() run 1 of E1() a_i(u_i,k_i): release (u_i@d_i) and react (k_i@r_i) channels passed over bond (a_i) channel. (No behavior attached to channels except interaction rate.)

MAPK Cascade Simulation in SPiM

- 1st stage: KKK* barely rises 2nd stage:
 - KK-PP rises, but is not stable
- 3rd stage:
 - K-PP flips up to max
 - even anticipating 2nd stage

Rates and concentrations ARTIFICIAL:

All coefficients 1.0 !!! 100×KKK, 100×KK, 100×K, 5×E2, 5×KKPse, 5×KPse.

Input is 1×E1. Output is 90×K-PP (ultrasensitivity).

MAPK Cascade Simulation in SPiM

All coefficients 1.0 !!! 100×KKK, 100×KK, 100×K, 13×E2, 13×KKPse, 13×KPse. nxE1 as indicated (1xE1 is not sufficient to produce an output)

MAPK Cascade Simulation in SPiM

Gene Networks

2. The Gene Machine

Pretty far from the atoms.

The "Central Dogma" of Molecular Biology

DNA Tutorial

The Gene Machine "Instruction Set"

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]

<u>Regulation</u> of a gene (positive and negative) influences transcription. The regulatory region has precise DNA sequences, but not meant for coding proteins: meant for binding regulators.

<u>Transcription</u> produces molecules (RNA or, through RNA, proteins) that bind to regulatory region of other genes (or that are endproducts). Human (and mammalian) Genome Size 3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD) Non-repetitive: 1Gbp 250MB In genes: 320Mbp 80MB Coding: 160Mbp 40MB Protein-coding genes: 30,000-40,000 <u>M.Genitalium</u> (smallest true organism) 580,073bp 145KB (eBook) <u>E.Coli</u> (bacteria): 4Mbp 1MB (floppy) <u>Yeast</u> (eukarya): 12Mbp 3MB (MP3 song) <u>Wheat</u> 17Gbp 4.25GB (DVD)

Gene Composition

Indirect Gene Effects

No combination of standard high-throughput experiments can reconstruct an a-priori known gene/protein network [Wagner].

Fig. 1. The importance of specifiying gene activity when reconstructing genetic networks. (a) A hypothetical biochemical pathway involving two transcription factors, a protein kinase, and a protein phosphatase, as well as the genes encoding them. See text for details. (b) Shown is a list of perturbation effects for each of the five genes in (a), when perturbing individual genes by deleting them, and when using mRNA expression level as an indicator of gene activity. The left-most symbol in each line stands for the perturbed gene. To the right of each colon is a list of genes whose activity is affected by the perturbation. (c) Analogous to (b) but for a different notion of gene activity (phosphorylation state).

One of many bistable switches that cannot be described by pure gene regulatory networks [Francois & Hakim].

higher organisms are conveyed by RNAs, not

John S. Mattick

proteins.

2005-09-15 51

60-100,000 "transcription units" (>30% of genome is transcribed)

Structure of a Regulatory Region

C Module A functions:

Vegetal plate expression in early development:

Synergism with modules B and G enhancing endoderm expression in later development:

Repression in ectoderm (modules E and F) and skeletogenic mesenchyme (module DC):

Fig. 1. Endo16 cis-regulatory system and interactive roles of module A. (A) Diversity of protein binding sites and organization into modular subregions [modified from (7)]. Specific DNA binding sites are indicated as red blocks; modular subregions are denoted by letters G to A (Bp, basal promoter). Proteins binding at the target sites considered in this work are indicated: Otx, SpOtx-1 (12); SpGCF1 (14); the proteins CG, Z, and P, which are not yet cloned; and protein C [a CREB family protein (18)] in subregion F. Proteins for which sites occur in multiple regions of the DNA sequence (indicated by the black line) are shown beneath. (B) Sequence of module A and location of protein binding sites. Sites are indicated in the same colors as in (A). A fragment containing CG₃ and CG₄ sites as well as Bp has no endoderm-

specific activity and services other upstream cis-regulatory systems promiscuously; similarly, the *Endo16* cis-regulatory system functions specifically with heterologous promoters substituted for Bp (*5*, *8*, *19*). Boxed sequences indicate conserved core elements of the target sites (*7*, *12*, *14*), not the complete target site sequences. (**C**) Integrative and interactive functions of module A (*5*, *8*). Module A communicates the output of all upstream modules to the basal transcription apparatus. It also initiates endoderm expression, increases the output of modules B and G, and is required for functions of the upstream modules F, E, and DC. These functions are repression of expression in nonendodermal domains and enhancement of expression in response to LiCl.

Taken from Eric H Davidson

Function of a Regulatory Region

Logic: Experimental and Computational Analysis of a Sea Urchin Gene. Science 279:1896-1902, 1998

The Raw Data

Figure 6. Feature variation during the cell cycle. The temporal variation in nine selected protein features during the cell cycle, with zero time (at the top of the plot) corresponding to the presumed time of cell division (M=61 transition). The color scales correspond to +/-two standard deviations from the cell cycle average. The concentric feature circles correspond to: isoefectric point, nuclear and extracellular localization predictions, PEST regions, instability index, N-linked glycosylation potential, O-GaINAc glycosylation potential, o-GaINAc glycosylation potential, serine/threonine phosphorylation potential and tyrosine phosphorylation potential. The presumed positions of the four cell cycle phases G1; S, G2 and M are marked. Also depicted are known cell cycle transcriptional activators (marked in blue), positioned at the time where they are reported to function.

Protein Feature Based Identification of Cell Cycle Regulated Proteins in Yeast Ulrik de Lichtenberg, Thomas S. Jensen, Lars J. Jensen and Søren Brunak

Gene Regulatory Networks

http://strc.herts.ac.uk/bio/maria/NetBuilder/

NetBuilder

The Programming Model

- Strange facts about genetic networks:
 - Not an operator algebra. The output of each gate is fixed and pre-determined; it is never a function of the input!
 - Not term-rewriting, nor Petri nets. Inhibition is widespread.
 - Not Communicating Sequential Processes. Feedback is widespread: asynchronous communication needed to avoid immediate self-deadlocks. Even the simplest gates cannot be modeled as a single synchronous automata.
 - Not Message-Passing between genes. Messages themselves have behavior (e.g., they stochastically decay and combine), hence messages are processes as well.
 - Not Data-Flow. Any attempt to use data-flow-style modeling seems doomed because of widespread loops that lead to deadlocks or unbounded queues. Data-flow tokens do not "decay" like proteins.
- How can it possibly work?
 - Stochastic broadcasting. The apparently crude idea of broadcasting a whole bunch of asynchronous decaying messages to activate a future gate, means there are never any "pipeline full" deadlocks, even in presence of abundant feedback loops.
 - Stochastic degradation. Degradation is fundamental for system stability, and at the same time can lead to sudden instability and detection of concentration levels.

Notations for the Gene Machine

- Many of the same techniques as for the Protein Machine apply.
 - Process Calculi, Petri Nets, Term-Rewriting Systems...
- But the "programming model" is different.
 - Asynchronous stochastic control.
 - Biologically poorly understood.
 - Network "motifs" are being analyzed.

- Specific techniques:
 - Hybrid Petri Nets
 - [Matsuno, Doi, Nagasaki, Miyano] Gene Regulation
 - Genomic Object Net www.genomicobject.net
- Gene Regulation Diagrams
- Mixed Gene-Protein Diagrams

(The Classical ODE Approach)

[Chen, He, Church]

$$\frac{d\mathbf{r}}{dt} = f(\mathbf{p}) - V\mathbf{r}$$
$$\frac{d\mathbf{p}}{dt} = L\mathbf{r} - U\mathbf{r}$$

n: number of genes
r mRNA concentrations (n-dim vector)
p protein concentrations (n-dim vector)

 $f(\mathbf{p})$ transcription functions: (n-dim vector polynomials on \mathbf{p})

A stochastic rate r is always associated with each channel a_r (at channel creation time) and delay τ_r , but is often omitted when unambiguous.

Production and Degradation

Degradation is extremely important and often deliberate; it changes unbounded growth into (roughly) stable signals.

A transcription factor is a *process* (not a message or a channel): it has behavior such as interaction on **p** and degradation.

Unary Pos Gate

Signal Amplification

 $pos(a,b) \triangleq$ $?a_{r}; \tau_{\eta}; (tr(b) | pos(a,b)) +$ $\tau_{\epsilon}; (tr(b) | pos(a,b))$ $tr(p) \triangleq (!p_{r}; tr(p)) + \tau_{\delta}$

E.g. 1 a that interacts twice before decay can produces 2 b that each interact twice before decay, which produce 4 c...

even with no a input, consitutive production of b gets amplified to a high c signal

Signal Normalization

^{30*}tr(a) | neg(a,b) | neg(b,c)

Self Feedback Circuits

Two-gate Feedback Circuits

Repressilator

Same circuit, three different degradation models by chaning the tr component:

Subtle... at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first, nothing really changes, but if the other one fires first, then the cycle progresses.

System Properties: Oscillation Parameters

The constitutive rate ϵ (together with the degradation rate) determines oscillation amplitude, while the inhibition rate η determines oscillation frequency.

We can view the interaction rate r as a measure of the volume (or temperature) of the solution; that is, of how often transcription factors bump into gates. Oscillation frequency and amplitude remain unaffected in a large range of variation of r.

Repressilator in SPiM

```
val dk = 0.001 (* Decay rate *)
val eta = 0.001 (* Inhibition rate *)
val cst = 0.1 (* Constitutive rate *)
let tr(p:chan()) =
  do !p; tr(p)
  or delay@dk
let neg(a:chan(), b:chan()) =
  do ?a; delay@eta; neg(a,b)
  or delay@cst; (tr(b) | neg(a,b))
(* The circuit *)
val bnd = 1.0 (* Protein binding rate *)
new a@bnd: chan()
new b@bnd: chan()
new c@bnd: chan()
run (neg(c,a) | neg(a,b) | neg(b,c))
```

```
2005-09-15 70
```

System Properties: Fixpoints

A sequence of neg gates behaves as expected, with alternating signals, (less "Booleanly" depending on attenuation).

Now add a self-loop at the head. Not a Boolean circuit!

No more alternations, because... each gate is at its fixpoint.

Repressilator ODE Model and Simulation

Bruce E Shapiro Cellerator

Guet et al.: D038/lac⁻

<u>Combinatorial Synthesis of Genetic Networks</u>, Guet, Elowitz, Hsing, Leibler, 1996, *Science*, May 2002, 1466-1470.

 $neg(TetR,TetR) | neg(TetR,LacI) | neg(LacI,\lambda cI) | neg(\lambda cI,GFP)$

r=1.0, ε=0.1, h=1.<u>0</u>, δ=0.001

6000

8000

10000

We can model an inducer like aTc as something that competes for the transcription factor.

IPTG de-represses the **lac operon**, by binding to the **lac** <u>repressor</u> (the **lac** I gene product), preventing it from <u>binding to the</u> operator.

4000

Guet et al.

<u>Combinatorial Synthesis of Genetic Networks</u>, Guet, Elowitz, Hsing, Leibler, 1996, *Science*, May 2002, 1466-1470.

They engineered in E.Coli all genetic circuits with four singleinput gates; such as this one:

Then they measured the GFP output (a fluorescent protein) in presence or absence of each of two inhibitors (aTc and IPTG).

Experiment:	The output of some
<i>aTc</i> 0101	circuits did not seem
<i>IPTG</i> 0011	to make any sense
<i>GFP</i> 0100	to make any sense

Here "1" means "high brightness" and "0" means "low brightness" on a population of bacteria after some time. (I.e. integrated in space and time.)

Further Building Blocks

D038/lac-

2005-09-15 **76**

Simulation results for D038/lac⁻

D016/lac⁻

Simulation results for D016/lac⁻

What was the point?

- Deliberately pick a controversial/unsettled example to test the methodology.
- Show that we can easily "play with the model" and run simulations.
- Get a feeling for the kind of subtle effects that may play a role.
- Get a feeling for kind of analysis that is required to understand the behavior of these systems.
- In the end, we are never "understanding" anything; we are just building theories/models that support of contradict experiments (and that suggest further experiments).

Transport Networks

3. The Membrane Machine Very far from the atoms.

Membranes are Oriented 2D Surfaces

Membrane Fusion

Positive curvature to Negative curvature transition in 3D

Membrane Fission

Negative curvature to Positive curvature transition in 3D

Cytokinesis (Mitosis)

Membrane Algorithms

Protein Production and Secretion

Viral Replication

Adapted from: B.Alberts et al. Molecular Biology of the Cell third edition p.279.

Receptor-Mediate Degradation Pathway As a "shapshot" diagram

Lipid bilayer

• LDL-Cholesterol Degradation

- A cast of many thousands (molecules) just to get one molecule from A to B.
- Membranes are key to the algorithm, we want to model *them*, not their individual millions of molecules.
- Some very fancy chemistry
 - But its "purpose" is to reliably implement a specific sequence of discrete steps.

Receptor-Mediate Degradation Pathway As a state transition diagram

Membrane Orientation

Membranes are closed non-intersecting curves, with an orientation⁽¹⁾.

Each membrane has two faces. A cytosolic (~*inner*) face and an exoplasmic (~*outer*) face. Nested membranes alternate orientation. (E.g. cytosolic faces always face each other, by definition, or by fusion/fission dynamics)

This alternation is illustrated by using two tones: blue (cytosol⁽²⁾) and white (exosol⁽³⁾). Bitonal diagrams.

Double membranes (e.g. the nuclear membrane) gives us blue-in-blue components.

(1) A membrane is built from a phospholipid bilayer that is asymmetrical. Moreover, all real membranes are heavily sprinkled with proteins: "each type of integral membrane protein has a single specific orientation with respect to the cytosolic and exoplasmic faces of a cellular membrane, and all molecules of any particular integral membrane protein share this orientation. This absolute asymmetry in protein orientation confers different properties on the two membrane faces." MCB p162.

(2) Short for Cytoplasmic Solution. (3) Short for Exoplasmic Region (I am making this one up).

Contiguous Membranes have Opposite Orientation

True "by construction": look at the basic biological operations that increase the number of membranes in a system:

Bitonal Structure

Bitonality

Blue and white areas alternate. Bitonal Invariant (~ Orientation Invariant)

Bitonality and subsystem coloring is preserved by reactions. I.e., blue and white fluids <u>never mix and never flip color.</u>

Bitonal Duality

Reactions come in complementary-tone versions.

The cell maintains a strong compartment-based separation between <u>inside fluids</u> and <u>outside fluids</u> even when incorporating foreign material.

Membrane Reactions

Reactions that "make sense" from a local, molecular viewpoint

(Symmetric by 90° rotation.)

Global Membrane Reactions

Reactions that "make sense" from a descriptive, global viewpoint

Mito/Mate by 3 Endo/Exo

Ex: Autophagic Process

Biologically, Mito/Mate clearly happens. However, weird sequences of Endo/Exo are also common.

Non-Reactions

Some global reactions are *ruled out* by bitonality, and by locality:

Violate bitonality.

Non implementable by "local" membrane operations.

Not observed (except gradual Open during "digestion" or "lysis").

Happen to be the Ambient Calculus operations :-(

The Membrane Machine "Instruction Set"

... in 3D

Notations for the Membrane Machine

- "Snapshot" diagrams
 - In biology literature.
- P-Systems
 - G.Paun uses ideas from the theory of grammars and formal languages to model "Membrane Computing" (book 2002).

http://psystems.disco.unimib.it/.

• BioAmbients

- An extension of BioSPI along Ambient Calculus lines (with more bio-relevant mobility primitives) to model dynamic compartments.
- Brane Calculi
 - Computation on the membrane...

Brane Calculi Computation "on" the membrane

N.B. Restriction (vn) could be added to both systems and branes. It usually would originate in branes, but would extrude to whole systems.

Congruence \equiv and Reaction \rightarrow

Fluidity	System $P \circ Q \equiv Q \circ P$ $P \circ (Q \circ R) \equiv (P \circ Q) \circ R$ $P \circ \diamond \equiv P$	Brane $\sigma \tau \equiv \tau \sigma$ $\sigma (\tau \rho) \equiv (\sigma \tau) \rho$ $\sigma 0 \equiv \sigma$
Plentitude	$!P \equiv P \circ !P$ etc.	$ \sigma \equiv \sigma \sigma$ etc.
Units	$0(\diamond) \equiv \diamond$ Froth/Fizz	$1.\sigma \equiv \sigma$ Inaction
Congruence	$P \equiv Q \Rightarrow P \circ R \equiv Q \circ R$ $P \equiv Q \Rightarrow !P \equiv !Q$ $P \equiv Q \land \sigma \equiv \tau \Rightarrow \sigma (PD \equiv \tau (QD))$	$\sigma \equiv \tau \Rightarrow \sigma \rho \equiv \tau \rho$ $\sigma \equiv \tau \Rightarrow ! \sigma \equiv ! \tau$ $\sigma \equiv \tau \Rightarrow a.\sigma \equiv a.\tau$

Reaction is up
to congruence $P \equiv P' \land P' \rightarrow Q' \land Q' \equiv Q \Rightarrow P \rightarrow Q$ This is the whole
semantics, except
for the effects of
individual actions.Reactions in
solution $P \rightarrow Q \Rightarrow P \circ R \rightarrow Q \circ R$
 $P \rightarrow Q \Rightarrow \sigma(PD) \rightarrow \sigma(QD)$ This is the whole
semantics, except
for the effects of
individual actions.

"Determinization"

Brane Reactions

Brane Reactions (Cartoons)

Phago
$$\mathfrak{D}_{n}.\sigma|\sigma'(PD) \mathfrak{D} \mathfrak{D}_{n}(\rho).\tau|\tau'(QD) \rightarrow \tau|\tau'(PQ\sigma|\sigma'(PDD)QD)$$

Exo $\mathfrak{D}_{n}^{\perp}.\tau|\tau'(\mathfrak{D}_{n}.\sigma|\sigma'(PD)QD) \rightarrow P \mathfrak{D} \sigma|\sigma'|\tau|\tau'(QD)$
Pino $\mathfrak{D}(\rho).\sigma|\sigma'(PD) \rightarrow \sigma|\sigma'(PQ) \mathcal{D}$

N.B.: the parity of nesting of P and Q is preserved; this makes the reactions preserve bitonality.

B&R
$$p_1 \circ p_1(p_2) \Rightarrow q_1(q_2) \cdot \alpha | \sigma \mathbb{Q} p_2 \circ \mathsf{PD} \Rightarrow q_1 \circ \alpha | \sigma \mathbb{Q} q_2 \circ \mathsf{PD}$$

(multiset rewriting, inside and outside membranes)

N.B.: in Phago (and Pino), one could perhaps require r to be, conservatively, a piece of t, by a non-linear rewrite:

....

CPhago $\mathfrak{S}_{n}.\sigma|\sigma'(PD \circ \mathfrak{S}_{n}(\rho).\tau|\tau'|\rho(QD \Longrightarrow \tau|\tau'(\rho(\sigma|\sigma'(PDD \circ QD \bullet \tau)\tau'))))$

Derivable Reactions (Cartoons)

A Decidable-Termination language [Busi Gorrieri]

Abbreviations: Mate

Abbreviations: Bud

Abbreviations: Drip

Drip
$$drip_n(\rho).\sigma = @(@(\rho).\heartsuit_n).\heartsuit_{n}^{\perp}.\sigma$$

A zero-expelled-membranes version of old "spontaneous" mito, to avoid arbitrary splits. Follows the pattern of inverse-mate.

Viral Reproduction

Ex: Viral Infection

Ex: Viral Progeny

Brane-Molecule Reactions (Cartoons)

With *molecule multisets* **p**,**q**:

Molecules

We now add *molecules* to the model:

systems	P,Q ::= m	m∈M molecules
	p,q ::= m ₁°°m _k	molecule multisets
actions	$a ::= \dots \mid p_1(p_2) \rightrightarrows q_1(q_2)$	bind&release

This single operation can essentially account for the whole Protein Machine, including its interactions with membranes. Except that, one must add some form of protein complexation, either as in BioSPi by adding restriction, or as in κ -calculus by adding complex molecules.

B&R
$$p_1 \circ p_1(p_2) \Rightarrow q_1(q_2) . \alpha | \sigma (p_2 \circ P) \rightarrow q_1 \circ \alpha | \sigma (q_2 \circ P)$$

(multiset rewriting, inside and outside membranes)

...

Simple bindings and releases - " \diamond (\diamond)" is omitted:

m(◇) ≓	bind out	⊐m(◊)	release out
◇(m) ≓	bind in	⇒ ◇(m)	release in

Ex: Molecular Pumps and Channels

A plant vacuole membrane has all those things on it.

ProtonPump = $| ATP(\diamond) \Rightarrow ADP \circ P_i(H^+ \circ H^+)$ IonChannel = $| C|^-(H^+) \Rightarrow \diamond (H^+ \circ C|^-)$ ProtonAntiporter = $| Na^+(H^+) \Rightarrow H^+(Na^+)$

PlantVacuole = ProtonPump | IonChannel | ProtonAntiporter (>)

Hence this reaction notation, \Rightarrow , is "like" chemical reaction notation, \rightarrow , but talking about both sides on a membrane at once.

(N.B. no built-in conservation of mass in either case.)

Special Cases of B&R

Chemical reaction catalysis (inside a compartment)

$$p \longrightarrow q \triangleq ! p(\diamond) \rightrightarrows q(\diamond) \square$$

$$\mathsf{p} \Longleftrightarrow \mathsf{q} \triangleq \mathsf{p} \longrightarrow \mathsf{q} \circ \mathsf{q} \longrightarrow \mathsf{p}$$

E.g. peptide bond between two aminoacids $R^1 R^2$: R^1 -COOH \circ H_2N - $R^2 \longrightarrow R^1$ -CO-HN- $R^2 \circ H_2O$

Compartment conditions (on the membrane of a compartment)

$$p \rightarrow q \triangleq ! \diamond(p) \Rightarrow \diamond(q)$$

$$p \rightarrow q | \sigma(P) \qquad Condition affecting P$$

E.g. a condition-driven reaction:

$$p \rightarrow q | \sigma(p) \implies p \rightarrow q | \sigma(q)$$

Ex: Virus Replication

nucap • cytosol $\rightarrow \rightarrow$ nucapⁿ • envelope-vesicle^m • cytosol'

(See paper for the other two vRNA pathways)

"On Brane" vs. "In Brane"

Awkward encoding. And all kinds of things can go wrong in the intermediate state.

- One cannot easily represent the Exo reaction in BioAmbients or any such compartment-based calculus, nor can one easily add it as a new primitive!
- But we can add BioAmbients-like In/Out out to Brane Calculi if we want to.

Adding Frills to the Framework

- So far, purely combinatorial:
 - No name binding, channel creation, communication...
 - Closer to combinatorial flavor of protein interactions
 - Goes a long way: do not try to extend needlessly.
- But one can easily add all that, and more:
 - CCS-style communication
 - Diffusion of molecules on cellular membrane
 - BioAmbients-style communication
 - Diffusion of molecules across cellular membrane
 - BioAmbients-like mobility
 - Non-bitonal
 - π -style restriction
- We have a framework where we can plug&play a rich set of interactions, while supporting compartments.

Towards the Million-Line Model

From Chemical Reactions to ODE's

From Chemical Reactions to Processes

Stoichiometric Matrices Blow Up

- We can translate Chemistry to ODE's or Processes
 - It is standard to go from chemical equations to ODE's via a stoichiometric matrix.
 - It is similarly possible to go from chemical equations to processes via a stoichiometric matrix.
- But there is a better way:
 - Stoichiometric matrices blow-up exponentially for biochemical systems (unlike for ordinary chemical systems) because proteins have combinatorial state and complexed states are common.
 - To avoid this explosion, we should describe biochemical systems compositionally without going through a stochiometric matrix (and hence without ODE's).

Complexes: The ODE Way

The matrix is very sparse, so the corresponding ODE system is not dense. But it still has 2^n equations, one per species, plus conservation equations ([ABC]+[A_pBC]=constant, etc.).

System description is <u>exponential</u> in the number of basic components.

Stoichiometric Matrix

N	v ₁	v ₂	V ₃	v ₄	v ₅	v ₆	v ₇	v ₈	v 9	v ₁₀	v ₁₁	v ₁₂	v ₁₃	v ₁₄	v ₁₅	v ₁₆	v ₁₇	v ₁₈	v ₁₉	v ₂₀	v ₂₁	v ₂₂	v ₂₃	V ₂₄
ABC																								
АрВС							/																	
АВрС																								
АВСр							_		2n _X	2 n	(2n	-1)												
АрВрС									- ^	61		<u>,</u>												
АрВСр																								
АВрСр																								
АрВрСр																								

2005-09-15 12

Complexes: The Reactive System Way

When the local domain reactions are not independent, we can use lateral communication so that each component is aware of the relevant others. System description is <u>linear</u> in the number of basic components.

(Its "run-time" behavior or analysis potentially blows-up just as in the previous case, but its <u>description</u> does not.)

Model Validation

Model Validation: Simulation

- Basic stochastic algorithm: Gillespie
 - Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
 - Can compute concentrations and reaction times for biochemical networks.
- Stochastic Process Calculi
 - BioSPi [Shapiro, Regev, Priami, et. al.]
 - Stochastic process calculus based on Gillespie.
 - BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]
 - Extension of BioSpi for membranes.
 - Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]
 - Original analysis of lymphocyte rolling in blood vessels of different diameters.
 - Case study: Lambda Switch [Celine Kuttler, IRI Lille]
 - Model of phage lambda genome (well-studied system).
 - Case study: VICE [U. Pisa]
 - Minimal prokaryote genome (180 genes) and metabolism of *whole* VIrtual CEII, in stochastic π -calculus, simulated under stable conditions for 40K transitions.
- Hybrid approaches
 - Charon language [UPenn]
 - Hybrid systems: continuous differential equations + discrete/stochastic mode switching.
 - Etc.

Model Validation: "Program" Analysis

• Causality Analysis

- *Biochemical pathways*, ("concurrent traces" such as the one here), are found in biology publications, summarizing known facts.
- This one, however, was automatically generated from a program written in BioSpi by comparing traces of all possible interactions. [Curti, Priami, Degano, Baldari]
- One can play with the program to investigate various hypotheses about the pathways.

• Control Flow Analysis

- Flow analysis techniques applied to process calculi.
- Overapproximation of behavior used to answer questions about what "cannot happen".
- Analysis of positive feedback transcription regulation in BioAmbients [Flemming Nielson].
- Probabilistic Abstract Interpretation

Fig.2. A computation of Sys. For readability, the processes, enclosed in boxes, have no address. Causality (both on transitions and processes) is represented by the (Hasse diagram resulting from the) arrows; their absence makes it explicit concurrent activities.

Model Validation: Modelchecking

- Temporal
 - Software verification of biomolecular systems (NA pump) [Ciobanu]
 - Analysis of mammalian cell cycle (after Kohn) in CTL. [Chabrier-Rivier Chiaverini Danos Fages Schachter]
 - E.g. is state S_1 a necessary checkpoint for reaching state S_2 ?
- Quantitative: Simpathica/xssys [Antioniotti Park Policriti Ugel Mishra]
 - Quantitative temporal logic queries of human Purine metabolism model.

Eventually(Always (PRPP = 1.7 * PRPP1) implies steady state() and Eventually(Always(IMP < 2 * IMP1)) and Eventually(Always(hx_pool < 10*hx_pool1)))

Stochastic: Spring [Parker Normal Kwiatkowska]

- Designed for stochastic (computer) network analysis
 - Discrete and Continuous Markov Processes.
 - Process input language.
 - Modelchecking of probabilistic queries.

What Reactive Systems Do For Us

We can write things down precisely

 We can modularly describe high structural and combinatorial complexity ("do programming").

We can calculate and analyze

- Directly support simulation.
- Support analysis (e.g. control flow, causality, nondeterminism).
- Support state exploration (modelchecking).

We can visualize

- Automata-like presentations.
- Petri-Net-like presentations.
- State Charts, Live Sequence Charts [Harel]
 - Hierarchical automata.
 - Scenario composition.

We can reason

- Suitable equivalences on processes induce algebraic laws.
- We can relate different systems (e.g. equivalent behaviors).
- We can relate different abstraction levels.
- We can use equivalences for state minimization (symmetries).

Disclaimers

- Some of these technologies are basically ready (medium-scale stochastic simulation and analysis, medium-scale nondeterministic and stochastic modelchecking).
- Others need to scale up significantly to be really useful. This is (has been) the challenge for computer scientists.

Many approaches, same basic philosophy, tools being built: \Rightarrow Proc. Computational Methods in Systems Biology [2003-2005]

Conclusions

- Q: "The data are accumulating and the computers are humming, what we are lacking are the words, the grammar and the syntax of a new language..." D. Bray (TIBS 22(9):325-326, 1997)
- A: "The most advanced tools for computer process description seem to be also the best tools for the description of biomolecular systems."

E.Shapiro (Lecture Notes)

References

[MCB] Molecular Cell Biology, Freeman. [MBC] Molecular Biology of the Cell, Garland. [Ptashne] A Genetic Switch. [Davidson] Genomic Regulatory Systems.

[Milner] Communicating and Mobile Systems: the Pi-Calculus. [Regev] Computational Systems Biology: A Calculus for Biomolecular Knowledge (Ph.D. Thesis).

Papers

BioAmbients

a stochastic calculus with compartments.

Brane Calculi

process calculi with computation "on" the membranes, not inside them. *Bitonal Systems*

membrane reactions and their connections to "local" patch reactions. *Abstract Machines of Systems Biology*

the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm