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50 Years of Molecular Cell Biology

● Genes are made of DNA
– Store digital information as sequences of 4 
different nucleotides

– Direct protein assembly through RNA and the 
Genetic Code

● Proteins (>10000) are made of amino acids
– Process signals

– Activate genes 

– Move materials

– Catalyze reactions to produce substances

– Control energy production and consumption

● Bootstrapping still a mystery
– DNA, RNA, proteins, membranes are today 
interdependent. Not clear who came first

– Separation of tasks happened a long time ago

– Not understood, not essential
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Towards Systems Biology

● Biologists now understand many of the cellular components
– A whole team of biologists will typically study a single protein for years
– Reductionism: understand the components in order to understand the system

● But this has not led to understand how “the system” works
– Behavior comes from complex patterns of interactions between components
– Predictive biology and pharmacology still rare
– Synthetic biology still unreliable

● New approach: try to understand “the system”
– Experimentally: massive data gathering and data mining (e.g. Genome projects)
– Conceptually: modeling and analyzing networks (i.e. interactions) of components

● What kind of a system?
– Just beyond the basic chemistry of energy and materials processing…
– Built right out of digital information (DNA)
– Based on information processing for both survival and evolution
– Highly concurrent

● Can we fix it when it breaks?
– Really becomes: How is information structured and processed?

Bioinformatics: storing and 
analyzing experimental data.

Molecular Biology: figuring out 
the components of living things.

Systems Biology: figuring out 
their connectivity.



2005-09-15 4

Storing Processes

● Today we represent, store, search, and analyze:
– Gene sequence data

– Protein structure data

– Metabolic network data

– Signaling pathway data

– …

● How can we represent, store, and analyze biological processes?
– Scalable, precise, dynamic, highly structured, maintainable representations 
for systems biology.

– Not just huge lists of chemical reactions or differential equations.

● In computing…
– There are well-established scalable representations of dynamic reactive 
processes.

– They look more or less like little, mathematically based, programming 
languages.

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343
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Structural Architecture

Nuclear
membrane

Membranes
everywhere

Mitochondria

Plasma 
membrane
(<10% of all 
membranes)

Vesicles

Eukaryotic
Cell

(10~100 trillion 
in human body)

Golgi

E.R.

H.Lodish et al.
Molecular Cell Biology 
fourth edition p.1
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Abstract Machines of Systems Biology
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines with:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Deep layering of abstractions

– Complex composition of simple components

– Discrete transitions between states

– Digital coding and processing of information

– Reactive information-driven behavior

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list



2005-09-15 8

Chemistry vs. ππππ-calculus

Na + Cl  →k1 Na+ + Cl-

Na+ + Cl- →k2 Na + Cl

Na

Na+

Cl

Cl-

!r ?r !s?s

k1

k2

k1

k2

Na Cl

Na+ Cl-

k1

k2

A process calculus (chemistry, or SBML)

Na = !rk1; ?sk2; Na 
Cl = ?rk1; !sk2; Cl

Cl-

Na+

A different process calculus (π)

This Petri-Net-like graphical representation 
degenerates into spaghetti diagrams: precise 
and dynamic, but not scalable, structured, or 
maintainable.

A compositional graphical representation, 
and the corresponding calculus.

Reaction
oriented
Reaction
oriented

Interaction
oriented

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

1 line per 
reaction

1 line per 
component
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Methods

● Model Construction (writing things down precisely)
– Formalizing the notations used in systems biology.

– Formulating modeling languages.

– Studying their kinetics (semantics).

● Model Validation (using models for postdiction and prediction)
– Simulation from compositional descriptions

●Stochastic: quantitative concurrent semantics.

●Hybrid: discrete transitions between continuously evolving states.

– “Program” Analysis
●Control flow analysis

●Causality analysis

– Modelchecking
●Standard, Quantitative, Probabilistic
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● Regev-Shapiro: “Molecules as Processes”:

● They chose π-calculus and adapted it with stochastic features
– To match the stochastic aspects of (bio)chemistry

– Many probabilistic process calculi predate them, but only Hillston (CSP) and 
Priami (π) had already studied stochastic calculi.

Basic Modeling Guidelines

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

State change
(state-transition systems)

Modification
(of chemical components)

CommunicationInteraction

ChannelInteraction capability

ProcessMolecule
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ππππ-calculus Executive Summary

● It’s for:
– The modular description of concurrent, nondeterministic systems
– Study of such systems based on their descriptions

● It’s got:
– Processes
– Channels
– A minimal syntax (it’s a language and also a model)

● You can:
– Fork new processes
– Create new channels
– Do I/O over channels (synchronous and asynchronous)

including passing channels over channels
– Make nondeterministic choices
– Define processes recursively

● That’s it.
– Except for extensive model theory and metatheory.
– Cannot pass processes over channels 

(simulated by passing channels to them)
– Cannot define procedures

(simulated by supplying reply channels)
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ππππ-calculus (a Process Algebra)

● Processes  P,Q,… - components of a system

● Channels    a,b,… - interactions between components

0 the process that does nothing

!a(b); P the process that outputs b on channel a (and then does P)

?a(x); P the process that inputs b on channel a (and then does P{x})

P | Q the process made of subprocesses P and Q running concurrently  

P + Q the process that behaves like either P or Q nondeterministically

*P the process that behaves like unboundedly many copies of P
=> recursive processes

=> unbounded number and species of processes

new x; P the process that creates a new channel x (and then does P{x})
=> private interactions

=> unbounded number and species of interactions
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ππππ-calculus (a Process Algebra)

● Dynamics

(!a(b); P) + P’ | (?a(x); Q{x}) + Q’ ���� P   |   Q{b}

Ex. !a(b); ?b |    ?a(x); (!x + ?b)
� ?b |    !b + ?b
� 0 |    0
= 0

● “Compositional” descriptions
– Describe how the individual components behave

● i.e. how they interact with any environment they may be placed in

– Build systems by combining components
● each components is part of the environment for the other components

– Behavior (and its analysis) arises from the combinatorics of interactions
● state space can be arbitrarily larger than its compositional description

● For concurrent, nondeterministic, unbounded-state systems
– Dynamic creation of new channels (e.g. binding sites)
– Dynamic creation of new processes (e.g. proteins)
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ππππ-calculus

Syntax

Chemical 
Mixing

Reactions
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Stochastic ππππ-calculus Executive Summary

● A simple variant of π-calculus: 
– Channels have stochastic “firing”
rates with exponential distribution.

– Nondeterministic choice becomes 
stochastic race.

– Cuts down to CTMCs (Continuous 
Time Markov Chains) in the finite 
case (not always). Then, standard 
analytical tools are applicable.

– Can be given friendly automata-like 
scalable graphical syntax (work in 
progress: Andrew Phillips).

– Is directly executable (e.g. via the 
Gillespie algorithm from physical 
chemistry).

– Is analyzable (large body of 
literature, at least in the non-
stochastic case).

A.Phillips, L.Cardelli. BioConcur’04.
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Stochastic ππππ-calculus

● Stochastic extension of π-calculus. [C.Priami]
– Associate a single parameter r (rate) in (0, infinity] to each activity a. 

– The rate and the associated exponential distribution describes the 
stochastic behavior of the activity.

a.P is  replaced   by   a@r.P

● Exponential distribution
– guarantees the memoryless property: the time at which a change of state 
occurs is independent of the time at which the last change of state 
occurred.

● Race condition
– is defined in a probabilistic competitive context: all the activities that are 
enabled in a state compete and the fastest one (stochastically) succeeds.

● New implementation: SPiM. [A.Phillips]. Paper at BioConcur
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Stochastic Approach

● Relatively recent development on Process Calculi
– For computer networking simulation and analysis
– Now for biochemical simulation and analysis

● Continuous Time Markov Chains
– Finite State Machines, with state transition times exponentially distributed 
(memoryless)

– Well studied class of stochastic processes
– Efficient analysis algorithms for stationary and transient analysis

● High level formalisms mapping to CTMCs
– Stochastic Petri Nets [Molloy]
– Markovian Queuing Networks [Muppala & Triverdi]
– Stochastic Automata Networks [Plateau]
– Probabilistic I/O Automata [Wu et al.]
– Stochastic Process Algebras [Herzog et al.] [Hillston]

Holger Hermanns
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● A deterministic system:
– May get “stuck in a fixpoint”. 

– And hence never oscillate.

● A similar stochastic system:
– May be “thrown off the fixpoint” by 

stochastic noise, entering a long orbit 
that will later bring it back to the fixpoint. 

– And hence oscillate.

Importance of Stochastic Effects

Mechanisms of noise-
resistance in genetic 
oscillators

Jose´ M. G. Vilar, Hao
Yuan Kueh, Naama Barkai, 
Stanislas Leibler

PNAS  April 30, 2002  vol. 
99  no. 9  p.5991
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1. The Protein Machine

An actual molecular interaction network.
(Nodes are distinct protein kinds, 
arcs mean that two kinds of proteins interact.)

Very close to 
the atoms.

● Complex folded-up shapes that:
– Fit together, dock, undock.

– Excite/unexcite, warp each other.

– Bring together, catalyze, transform materials.

– Form complex aggregates and networks.

● Mapping out such networks:
– In principle, it’s “just” a very large set of chemical equations.

– Notations have been developed to summarize and abstract.
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Protein Structure

Green Fluorescent Protein

Triose Phosphate Isomerase

http://www.cmbi.kun.nl/gvteach/bioinformatica1/

The 20 Aminoacids

Primary Secondary Tertiary Quaternary

Alpha Helix, Beta Sheet
Tryptophan
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Protein Function

Taken from
?the web?

Regulation

Structure

Movement

Metabolism

Transport

Signalling

Degradation

Assembly
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Some Allosteric Switches

Taken from
Wendell Lim

Kinase
= donates phosphate P

= phosphorilates other proteins

Phosphatase
= accepts phosphate P

= dephosphorilates other proteins

Logical AND
at equal concentrations of the 

individual input stimuli, activation is 
much higher if both stimuli are 

present

Allosteric (“other shape”) 
reactions modify accessibility.

“Phosphatase Kinase Kinase” =

a kinase that activates a kinase

that activates a phosphatase 

that deactivates a protein.

Humans have the same 
number of modular protein 
domains (building blocks) as 
worms, but twice the number 
of multi-domain proteins.
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MIM: Molecular Interaction Maps (Kohn)

Taken from
Kurt W. Kohn
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Molecular Interaction Maps

K.W. Kohn. Molecular interaction map of the 
mammalian cell cycle control and DNA repair systems. 
Molecular Biology of the Cell 10(8):2703-34, 1999.

JDesigner
http://www.cds.caltech.edu/~hsauro/index.htm

The p53-Mdm2 and DNA Repair Regulatory Network
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Kohn Diagrams

Taken from

Kurt W. Kohn
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Kitano Diagrams

Taken from
Hiroaki Kitano

To more abstract 
representation of the 
logic such reactions 

implement
From direct graphical 
representation of 
chemical reactions
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The Protein Machine “Instruction Set”

Protein

On/Off switches

Binding Sites

Inaccessible

Inaccessible

Switching of accessible switches.
- May cause other switches and 
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific 
proteins in specific states.

Binding on accessible sites.
- May cause other switches and 
binding sites to become (in)accessible.
- May be triggered or inhibited by nearby specific 
proteins in specific states.

Each protein has a structure 
of binary switches and binding sites.
But not all may be always accessible.

cf. BioCalculus [Kitano&Nagasaki], κ-calculus [Danos&Laneve]
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Notations for the Protein Machine

● Stochastic π-Calculus
– Priami (following Hillston’s PEPA) formalizes a 

stochastic version of p-calculus where channels 
have communication rates.

● BioSPi
– Regev-Shapiro-Silverman propose modeling 

chemical interactions (exchange of electrons and 
small molecules) as “communication”.

– Standard stochastic simulation algorithms 
(Gillespie) can be used to run in-silico 
experiments.

– Complex formation is encoded via p-restriction.

● PEPA
– Calder Gilmore and Hillston model the ERK 

pathway.

● k-calculus
– Danos and Laneve (following Kitano’s BioCalculus) 

define a calculus where complex formation is 
primitive.

● (Stochastic) Petri Nets
– S.Reddy’94 modeling pathways.
– Srivastava Perterson and Bentley analyze and 

simulate E.coli stress response circuit.

● Bio State Charts
– Harel uses State Charts to model biological 

interactions via a semi-graphical FSM notation.

● Pathway Logic
– Talcott-Eker-Knapp-Lincoln use term-rewriting. 

● BioCham
– ChabrierRivier-Fages-Soliman use term-rewriting 

and CLT modelchecking.

● Kohn Diagrams, Kitano Diagrams

● SBML (Systems Biology Markup Language)

– XML dialect for MIM’s:
● Compartments (statically nested)

● Reagents with concentrations

● Reactions with various rate laws

– Read and written by many tools
via the Systems Biology Workbench protocol
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François & Hakim

Fig 3A

Fig 14A

Free evolution

Reaction
oriented

Design of genetic networks with specified functions by evolution in silico
P. François, V. Hakim, Proc. Natl. Acad. Sci. USA, (101)2, 580-585, 2004.
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François & Hakim 3A

rates
dkAdkAdkAdkA @@@@ 0.00850.00850.00850.0085

dkBdkBdkBdkB @@@@ 0.0340.0340.0340.034

dkABdkABdkABdkAB @@@@ 0.530.530.530.53

pntAunbpntAunbpntAunbpntAunb @@@@ 0.420.420.420.42

geneACstgeneACstgeneACstgeneACst @@@@ 0.200.200.200.20

geneBCstgeneBCstgeneBCstgeneBCst @@@@ 0.370.370.370.37

geneBInhgeneBInhgeneBInhgeneBInh @@@@ 0.027 0.027 0.027 0.027 

new new new new bAbAbAbA @ 0.19@ 0.19@ 0.19@ 0.19

new AB @ 0.72new AB @ 0.72new AB @ 0.72new AB @ 0.72

ptnB() @@@@

ττττ@dkB degrade

+ ?AB; cpxAB() complex with prot A

ptnA() @@@@

ττττ@dkA degrade

+ !AB complex with prot B

+ new unb@pntAunb bind to gene b

!bA(unb); ?unb; ptnA()

cpxAB() @@@@ ττττ@dkAB degrade

geneA() @@@@ ττττ@geneACst; (ptnA() | geneA()) constit. make prot A

geneBfree() @@@@

ττττ@geneBCst; (ptnB() | geneBfree())            constit. make prot B

+ ?bA(unb); geneBbound(unb)               bind to prot A (inhibit)

geneBbound(unb) @@@@

ττττ@geneBInh; (ptnB() | geneBbound(unb))       inhib. make prot B

+ !unb; geneBfree()                          unbind from prot A

geneA() | geneBfree()            1 gene a and 1 gene b

Interaction
oriented
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One State of the Simulation

6 possible 
reactions 
on AB

geneA
τ@geneACst

A

A A

B
B

B

AB@0.72?
? ?

! !

τ@dkB
τ@dkB

τ@dkB

τ@dkA τ@dkA

bA@0.19

geneBfree

!(new unb@ptnAunb)

τ@geneBCst

B

?(unb)

2 possible 
reactions 
on bA

1 possible 
reactions 
on each τ

!(new unb@ptnAunb)

Use Gillespie to pick a 
reaction and move on

AB

geneBbound



2005-09-15 33

François & Hakim 3A in SPiM

(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)(* Francois and Hakim circuit 3A *)

valvalvalval pntAunbpntAunbpntAunbpntAunb = 0.42= 0.42= 0.42= 0.42

valvalvalval geneACstgeneACstgeneACstgeneACst = 0.20= 0.20= 0.20= 0.20

valvalvalval geneBCstgeneBCstgeneBCstgeneBCst = 0.37= 0.37= 0.37= 0.37

valvalvalval geneBInhgeneBInhgeneBInhgeneBInh = 0.027 = 0.027 = 0.027 = 0.027 

valvalvalval dkAdkAdkAdkA = 0.0085= 0.0085= 0.0085= 0.0085

valvalvalval dkBdkBdkBdkB = 0.034= 0.034= 0.034= 0.034

valvalvalval dkABdkABdkABdkAB = 0.53= 0.53= 0.53= 0.53
new new new new bAbAbAbA @ 0.19@ 0.19@ 0.19@ 0.19

new AB @ 0.72new AB @ 0.72new AB @ 0.72new AB @ 0.72

let let let let ptnAptnAptnAptnA() =() =() =() =

do do do do delay@dkAdelay@dkAdelay@dkAdelay@dkA degradedegradedegradedegrade

or !AB or !AB or !AB or !AB complex with complex with complex with complex with protprotprotprot BBBB

or (new or (new or (new or (new unb@pntAunbunb@pntAunbunb@pntAunbunb@pntAunb bind to gene bbind to gene bbind to gene bbind to gene b

!!!!bA(unb);(?unbbA(unb);(?unbbA(unb);(?unbbA(unb);(?unb; ; ; ; ptnAptnAptnAptnA()))()))()))()))

let let let let ptnBptnBptnBptnB() =() =() =() =

do do do do delay@dkBdelay@dkBdelay@dkBdelay@dkB degradedegradedegradedegrade

or ?or ?or ?or ?AB;cpxABAB;cpxABAB;cpxABAB;cpxAB() () () () complex with complex with complex with complex with protprotprotprot AAAA

let let let let cpxABcpxABcpxABcpxAB() = () = () = () = delay@dkABdelay@dkABdelay@dkABdelay@dkAB degradedegradedegradedegrade

let let let let geneAgeneAgeneAgeneA() =() =() =() =

delay@geneACstdelay@geneACstdelay@geneACstdelay@geneACst; (; (; (; (ptnAptnAptnAptnA() | () | () | () | geneAgeneAgeneAgeneA()) ()) ()) ()) constitconstitconstitconstit. make . make . make . make protprotprotprot AAAA

let let let let geneBfreegeneBfreegeneBfreegeneBfree() =() =() =() =

do do do do delay@geneBCstdelay@geneBCstdelay@geneBCstdelay@geneBCst; (; (; (; (ptnBptnBptnBptnB() | () | () | () | geneBfreegeneBfreegeneBfreegeneBfree())  ())  ())  ())  constitconstitconstitconstit. make . make . make . make protprotprotprot BBBB

or ?or ?or ?or ?bA(unbbA(unbbA(unbbA(unb); ); ); ); geneBbound(unbgeneBbound(unbgeneBbound(unbgeneBbound(unb)               )               )               )               bind to bind to bind to bind to protprotprotprot A (inhibit)A (inhibit)A (inhibit)A (inhibit)

and and and and geneBbound(unb:chgeneBbound(unb:chgeneBbound(unb:chgeneBbound(unb:ch()) =()) =()) =()) =

do do do do delay@geneBInhdelay@geneBInhdelay@geneBInhdelay@geneBInh; (; (; (; (ptnBptnBptnBptnB() | () | () | () | geneBbound(unbgeneBbound(unbgeneBbound(unbgeneBbound(unb)) )) )) )) inhibinhibinhibinhib. make . make . make . make protprotprotprot BBBB

or !or !or !or !unbunbunbunb; ; ; ; geneBfreegeneBfreegeneBfreegeneBfree()                          ()                          ()                          ()                          unbind from unbind from unbind from unbind from protprotprotprot AAAA

run (run (run (run (geneAgeneAgeneAgeneA() | () | () | () | geneBfreegeneBfreegeneBfreegeneBfree())         ())         ())         ())         1 gene a and 1 gene b1 gene a and 1 gene b1 gene a and 1 gene b1 gene a and 1 gene b

Interaction
oriented
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François & Hakim Fig3A, SPiM simulation

Spontaneous switch at ~500
(as discussed in Supporting Text)
30xB injected at ~3000
30xA injected at ~4000

Free evolution

120xA injected at ~4000
120xB injected at ~8000

Parameters as in paper

Modified for stability: dkA = 0.02, dkB = 0.02

Free evolution

Spontaneous switch at ~1100
100xB injected at ~3000
30xA injected at ~4000

3 copies of each gene.

SPiM simulation
SPiM simulationSPiM simulation

SPiM simulation SPiM simulation SPiM simulation
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François & Hakim Fig3Ast8

200xA injected at ~2500
500xB injected at ~5000
200xA injected at ~7500

Fig 13A

Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Fig 8

200xB injected at 0
600xA injected at ~2500
600xB injected at ~7500

Free evolution

SPiM simulation
SPiM simulation SPiM simulation SPiM simulation
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Graphical Representation

● <Slides by Andrew Phillips>
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MAPK Cascade

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang and 
James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

10 chemical 
reactions

ReservoirsReservoirsReservoirs

Back EnzymesBack Enzymes
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As 18 Ordinary Differential Equations
Plus 7 conservation equations

Each molecule

in exactly one state

One equation for each 
species (8) and complex 
(10), but not for constant 
concentration enzymes (4)
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The Circuit

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)
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Enzymatic Reactions

S P

E

E+S ES P+E
c

d

e

S() @ new u@d new k@e
!ac(u,k); (!ud; S() + !ke; P())

E() @ ?ac(u,k); (?ud; E() + ?ke; E())

E

Pac ud ke

S

Reaction View

≡

Interaction View
bind

unbind

react
bind unbind react

P() @ …

private bindings between
one S and one E molecule

(c,d,e)

intermediate
complex
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MAPK Cascade in SPiM
let KKK() =

(new u1@d1:Release new k1@r1:React

!a1(u1,k1); (do !u1;KKK() or !k1;KKKst()))

and KKKst() =

(new u2@d2:Release new k2@r2:React

do !a2(u2,k2); (do !u2;KKKst() or !k2;KKK())

or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst())

or ?a5(u5,k5); (do ?u5;KKKst() or ?k5;KKKst()))

let E1() = 

?a1(u1,k1); (do ?u1;E1() or ?k1;E1())

let E2() =

?a2(u2,k2); (do ?u2;E2() or ?k2;E2())

let KK() =

(new u3@d3:Release new k3@r3:React 

!a3(u3,k3); (do !u3;KK() or !k3;KK_P()))

and KK_P() =

(new u4@d4:Release new k4@r4:React 

new u5@d5:Release new k5@r5:React

do !a4(u4,k4); (do !u4;KK_P() or !k4;KK())

or !a5(u5,k5); (do !u5;KK_P() or !k5;KK_PP()))

and KK_PP() =

(new u6@d6:Release new k6@r6:React 

do !a6(u6,k6); (do !u6;KK_PP() or !k6;KK_P())

or ?a7(u7,k7); (do ?u7;KK_PP() or ?k7;KK_PP())

or ?a9(u9,k9); (do ?u9;KK_PP() or ?k9;KK_PP()))

and KKPse() = 

do ?a4(u4,k4); (do ?u4;KKPse() or ?k4;KKPse())

or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse())

let K() = 

(new u7@d7:Release new k7@r7:React 

!a7(u7,k7); (do !u7;K() or !k7;K_P()))

and K_P() = 

(new u8@d8:Release new k8@r8:React 

new u9@d9:Release new k9@r9:React 

do !a8(u8,k8); (do !u8;K_P() or !k8;K())

or !a9(u9,k9); (do !u9;K_P() or !k9;K_PP()))

and K_PP() = 

(new u10@d10:Release new k10@r10:React 

!a10(u10,k10); (do !u10;K_PP() or !k10;K_P()))

and KPse() = 

do ?a8(u8,k8); (do ?u8;KPse() or ?k8;KPse())

or ?a10(u10,k10); (do ?u10;KPse() or ?k10;KPse())

[1]substrate

[2]substrate

[3]kinase

[5]kinase

[1]enzyme

[2]enzyme

[3]substrate

[4]substrate

[5]substrate

[6]substrate

[7]kinase

[9]kinase

[4]phtase

[6]phtase

[7]substrate

[8]substrate

[9]substrate

[10]substrate

[8]phtase

[10]phtase

KKK:E1 complex

E1:KKK complex

One process for each 
component (12) including 
enzymes, but not for 
complexes. 

No need for conservation 
equations: implicit in “choice”
operator in the calculus.



2005-09-15 42

… global channels

type Release = chan() 

type React = chan()

type Bond = chan(Release,React) 

new a1@1.0:Bond val d1=1.0 val r1=1.0

new a2@1.0:Bond val d2=1.0 val r2=1.0

new a3@1.0:Bond val d3=1.0 val r3=1.0

new a4@1.0:Bond val d4=1.0 val r4=1.0

new a5@1.0:Bond val d5=1.0 val r5=1.0

new a6@1.0:Bond val d6=1.0 val r6=1.0

new a7@1.0:Bond val d7=1.0 val r7=1.0

new a8@1.0:Bond val d8=1.0 val r8=1.0

new a9@1.0:Bond val d9=1.0 val r9=1.0

new a10@1.0:Bond val d10=1.0 val r10=1.0

…

run 100 of KKK()  run 100 of KK()   run 100 of K()

run 1 of E2()  run 1 of KKPse()  run 1 of KPse()

run 1 of E1()

ai(ui,ki): release (ui@di) and react (ki@ri) 
channels passed over bond (ai) channel.
(No behavior attached to channels 
except interaction rate.)
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MAPK Cascade Simulation in SPiM

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

Rates and concentrations 
ARTIFICIAL:

All coefficients 1.0 !!!

100xKKK, 100xKK, 100xK,   

5xE2, 5xKKPse, 5xKPse.  

Input is 1xE1. 
Output is 90xK-PP (ultrasensitivity).

KKK*

KK-PP

K-PP

KKK

KK

K

KK-P

K-P

1xE1   injected

1st stage: 
KKK* barely rises

2nd stage: 

KK-PP rises, but is not stable

3rd stage: 

K-PP flips up to max

even anticipating 2nd stage 
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MAPK Cascade Simulation in SPiM

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

All coefficients 1.0 !!!

100xKKK, 100xKK, 100xK,   

13xE2, 13xKKPse, 13xKPse.

nxE1 as indicated

(1xE1 is not sufficient to produce an output)
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MAPK Cascade Simulation in SPiM

Rates and concentrations 
AS IN PAPER:

1xE2 (0.3 nM)

1xKKPase (0.3 nM)

120xKPase (120 nM)

3xKKK (3 nM)

1200xKK (1.2 uM)

1200xK (1.2 uM)

dx = rx = 150,  ax = 1  

(Kmx = (dx + rx) / ax, Km = 300 nM)

1xE1

K-PKKK KKK*

E1 

E2

KK KK-P

KK-P’ase

KK-PP K

K-P’ase

K-PP

(output)

(input)

KKK

KK

K

KK-P

K-P

1xE1   injected

KKK*

KK-PP

K-PP
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2. The Gene Machine
Pretty far from 
the atoms.

Taken from
Leroy Hood

The “Central Dogma” of Molecular Biology

transcription translation interaction

folding

regulation

4-letter
digital code

4-letter
digital code

20-letter
digital code

50.000(?) 
shapes

Lactose Operon

Taken from
Pedro Mendes

DNA Tutorial
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The Gene Machine “Instruction Set”

Coding region

Positive Regulation

TranscriptionNegative Regulation

Regulatory region

Gene
(Stretch of DNA)

Regulation of a gene (positive and 
negative) influences 
transcription. The regulatory 
region has precise DNA 
sequences, but not meant for 
coding proteins: meant for 
binding regulators.

Transcription produces molecules 
(RNA or, through RNA, proteins) 
that bind to regulatory region of 
other genes (or that are end-
products).

Human (and mammalian) Genome Size
3Gbp (Giga base pairs) 750MB @ 4bp/Byte (CD)
Non-repetitive: 1Gbp 250MB
In genes: 320Mbp 80MB
Coding: 160Mbp 40MB
Protein-coding genes: 30,000-40,000

M.Genitalium (smallest true organism)
580,073bp 145KB (eBook)

E.Coli (bacteria): 4Mbp 1MB (floppy)
Yeast (eukarya): 12Mbp 3MB (MP3 song)
Wheat 17Gbp 4.25GB (DVD)

Input Output
Input

Output1Output2

“External Choice”
The phage 

lambda switch

cf. Hybrid Petri Nets [Matsuno, Doi, Nagasaki, Miyano]
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Gene Composition

a b

Under the assumptions [Kim & Tidor]
1) The solution is well-stirred

(no spatial dependence on concentrations or rates).
2) There is no regulation cross-talk.
3) Control of expression is at transcription level only 

(no RNA-RNA or RNA-protein effects)
4) Transcriptions and translation rates monotonically 

affect mRNA and protein concentrations resp.

Is a shorthand for:

gene
b

mRNA

protein

a

A B

translation

transcription

regulation

degradation

a b a b

Ex: Bistable Switch

a b

c

a b

c

a b

c
Expressed

Repressed

Expressing

Ex: Oscillator
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Indirect Gene Effects

Taken from
Andreas Wagner

No combination of standard 
high-throughput experiments 
can reconstruct an a-priori 
known gene/protein network 
[Wagner].

ba

A B

ba

BA:BAOne of many bistable switches 
that cannot be described by 
pure gene regulatory networks 
[Francois & Hakim].
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Structure of the Coding Region

Taken from
John Mattick

The Central Dogma Challenging the Dogma
(in higher organisms)

97-98% of the transcriptional output of the 
human genome is non-protein-coding RNA.
30-40,000 “protein genes” (1.5% of genome)
60-100,000 “transcription units” (>30% of genome is transcribed)

transcription

DNA

mRNA

Protein

translation

RNA is not just an intermediary; it can:
- Fold-up like a protein
- Act like an enzyme
- Regulate other transcribed RNA
- Direct protein editing

• The majority of the genomic sequence in 
higher organisms (the non-protein-coding DNA) 
is devoted to the control of developmental 
programming.
• The majority of the regulatory transactions in 
higher organisms are conveyed by RNAs, not 
proteins.

John S. Mattick
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Structure of a Regulatory Region

Taken from
Eric H Davidson

2300bp!

> average   
protein

DNA

Protein 
binding sites

Proteins

Protein 
binding sites

DNA 
Sequence
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Function of a Regulatory Region

Or

And

GateAmplify
Sum

DNA
Begin coding region

C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory 
Logic: Experimental and Computational Analysis of a 
Sea Urchin Gene. Science 279:1896-1902, 1998
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The Raw Data

Figure 6. Feature variation during the cell cycle. The temporal variation in nine selected protein features during the cell cycle, with zero time (at the top of the plot) corresponding to the presumed time of cell division (M=G1 transition). The color scales correspond to +/-two 
standard deviations from the cell cycle average. The concentric feature circles correspond to: isoelectric point, nuclear and extracellular localization predictions, PEST regions, instability index, N-linked glycosylation potential, O-GalNAc glycosylation potential, 
serine/threonine phosphorylation potential and tyrosine phosphorylation potential. The presumed positions of the four cell cycle phases G1; S, G2 and M are marked. Also depicted are known cell cycle transcriptional activators (marked in blue), positioned at the time 
where they are reported to function.

Protein Feature Based Identification of Cell Cycle Regulated Proteins in Yeast
Ulrik de Lichtenberg, Thomas S. Jensen, Lars J. Jensen and Søren Brunak

Taken from
Brunak

Known cell cycle 
transcriptional activators

Cyclins

S.cerevisiae 
yeast cell cycle

Average value of a given feature 
over all cell-cycle-proteins whose 
genes are maximally expressed 
at a given time in the cycle.

Measured  protein features
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E.H.Davidson, D.R.McClay, L.Hood. Regulatory gene 
networks and the properties of the developmental 

process. PNAS 100(4):1475–1480, 2003.

Gene Regulatory Networks

NetBuilder
http://strc.herts.ac.uk/bio/maria/NetBuilder/

Or

And

GateAmplify
Sum

DNA
Begin coding region

C-H.Yuh, H.Bolouri, E.H.Davidson. Genomic Cis-Regulatory Logic: Experimental and 
Computational Analysis of a Sea Urchin Gene. Science 279:1896-1902, 1998
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Epigenetic Control
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The Programming Model

● Strange facts about genetic networks:
– Not an operator algebra. The output of each gate is fixed and pre-determined; it is 

never a function of the input!

– Not term-rewriting, nor Petri nets. Inhibition is widespread. 

– Not Communicating Sequential Processes. Feedback is widespread: asynchronous 
communication needed to avoid immediate self-deadlocks. Even the simplest gates 
cannot be modeled as a single synchronous automata. 

– Not Message-Passing between genes. Messages themselves have behavior (e.g., they 
stochastically decay and combine), hence messages are processes as well. 

– Not Data-Flow. Any attempt to use data-flow-style modeling seems doomed because 
of widespread loops that lead to deadlocks or unbounded queues. Data-flow tokens do 
not “decay” like proteins.

● How can it possibly work?
– Stochastic broadcasting. The apparently crude idea of broadcasting a whole bunch of 

asynchronous decaying messages to activate a future gate, means there are never any 
“pipeline full” deadlocks, even in presence of abundant feedback loops. 

– Stochastic degradation. Degradation is fundamental for system stability, and at the 
same time can lead to sudden instability and detection of concentration levels.
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Notations for the Gene Machine

● Many of the same techniques as for 
the Protein Machine apply.
– Process Calculi, Petri Nets, Term-

Rewriting Systems…

● But the “programming model” is 
different.
– Asynchronous stochastic control.

– Biologically poorly understood. 

– Network “motifs” are being analyzed.

● Specific techniques:
– Hybrid Petri Nets

● [Matsuno, Doi, Nagasaki, Miyano] 
Gene Regulation

● Genomic Object Net 
www.genomicobject.net

● Gene Regulation Diagrams

● Mixed Gene-Protein Diagrams
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(The Classical ODE Approach)
[Chen, He, Church]

Genes mRNA Proteins

Degradation

C L

V U

r p

d r
dt

= f (p) - V r

d p
dt

= L r - U r

n: number of genes
r mRNA concentrations (n-dim vector)
p protein concentrations (n-dim vector)

f (p) transcription functions: 
(n-dim vector polynomials on p)

I.e.: to model an operating 
system, write a set of 
differential equations relating 
the concentrations in memory 
of data structures and stack 
frames over time. (Duh!)
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Nullary Gate

b

null

stochastic delay (τ) with 
rate ε of constitutive 

transcription 

output protein 
(transcripion factor), 

spawn out

and repeat
(recursive, parametric) 

process definition

null(b) @ τε; (tr(b) | null(b))

interaction site of 
output protein

spontaneous 
(“constitutive”) 

outputno input

A stochastic rate r is always associated with each channel ar (at channel 
creation time) and delay τr, but is often omitted when unambiguous.
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Production and Degradation
Degradation is extremely important and often deliberate; 
it changes unbounded growth into (roughly) stable signals.

(output, !) interaction with rate r
(input, ?, is on the target gene)

tr(p) @ (!pr; tr(p)) + τδ

degradation rate δ

transcripton
factor

and repeat

time

null(b) @ τε; (tr(b) | null(b))
b

null

product

ε=0.1, δ=0.001

interaction 
offers on b

(= number of tr
processes)

combined effect of 
production and 

degradation (without 
any interaction on b) null(b)

interaction site of 
transcription factor

degradation

A transcription factor is a process (not a message or a channel): 
it has behavior such as interaction on p and degradation.

stochastic choice 
(race between r and δ)

b
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Unary Pos Gate

pos

a b

output (stimulated 
or constitutive)

input 
(excitatory)

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

*tr(ar) | pos(ar,b)

pos(a,b)

parallel, not sequence, 
to handle self-loops 
without deadlock

(input, ?) interaction with rate r

or constitutive transcription
to always get things started

output protein

unlimited 
amount of

Constitutive

Stimulated

b
r=1.0, ε=0.01, η=0.1, δ=0.001

transcripton delay 
with rate η

race between 
r and ε
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Unary Neg Gate

a b

neg

output (constitutive 
when not inhibited)

input 
(inhibitory)

neg(a,b) @
?ar; τη; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

inhibition delay 
with rate η

or constitutive transcription
to always get things started

(input, ?) interaction with rate r

neg(ar,b)

*tr(ar) | neg(ar,b)

Constitutive

Inhibited

r=1.0, ε=0.1, η=0.01, δ=0.001

b

race between 
r and ε
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Signal Amplification

pos

a

pos

cb

tr(p) @ (!pr; tr(p)) + τδ

pos(a,b) @
?ar; τη; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b))

E.g. 1 a that 
interacts twice 
before decay can 
produces 2 b that 
each interact twice 
before decay, which 
produce 4 c…

pos(a,b) | 
pos(b,c)

pos(a,b) | pos(b,c)

With little degradation

r=1.0, ε=0.01, η=0.1, δ=0.00001

a
b

c
r=1.0, ε=0.01, η=0.1, δ=0.001

a

b

c

even with no a input, 
consitutive production 
of b gets amplified to 

a high c signal

pos(a,b) | pos(b,c)
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Signal Normalization

negneg

a cbneg(a,b) | 
neg(b,c) 

neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

a

b
c

a non-zero input level, a, 
whether weak or strong, 

is renormalized to a 
standard level, c.

30*tr(a) | neg(a,b) | neg(b,c)

r=1.0, ε=0.1, η=0.01, δ=0.001
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r=1.0, ε=10.0, h=1.0, δ=0.005

neg(a,a)

a

Self Feedback Circuits

pos(a,a) neg(a,a) 
a

neg

a

pos

neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, δ=0.01

pos(a,a)

a

pos(a,b) @
?ar; (tr(b) | pos(a,b)) + 
τε; (tr(b) | pos(a,b)) 

tr(p) @ (!pr; tr(p)) + τδ

δ=0.0005Less degradation

And a bit less δ=0.0001

high, to raise 
the signal

(Can overwhelm degradation, 
depending on parameters)
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Two-gate Feedback Circuits

negpos

b

a

pos(b,a) |
neg(a,b) 

neg(b,a) |
neg(a,b) 

negneg

b

a

For some degradation rates is quite stable:

r=1.0, ε=0.1, h=0.01, δ=0.0005

pos(b,a) | neg(a,b)

aa

bb

r=1.0, ε=0.1, h=0.01, δ=0.0001

But with a small change in degradation, it goes wild:

pos(b,a) | neg(a,b)

a

b

Bistable:

a b

ab

r=1.0, ε=0.1, h=0.01, δ=0.001

neg(b,a) | neg(a,b)

ε=0.1, h=0.01, δ=0.001

5 runs with r(a)=0.1, 
r(b)=1.0 shows that 
circuit is now biased 
towards expressing b

b

Monostable:
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neg(a,b) @
?ar; τh; neg(a,b) + 
τε; (tr(b) | neg(a,b)) 

Repressilator

neg neg

negc b

a

neg(a,b) |
neg(b,c) |
neg(c,a) 

tr(p) @ !pr tr(p) @ !pr + τδ

tr(p) @ (!pr; tr(p)) + τδ

r=1.0, ε=0.1, h=0.04 r=1.0, ε=0.1, h=0.04, δ=0.0001

r=1.0, ε=0.1, h=0.001, δ=0.001

a b c a b c

a b c

Same circuit, three different degradation models by chaning the tr component:

Subtle… at any point one gate is inhibited and the other two can fire constitutively. If one of them fires first, 
nothing really changes, but if the other one fires first, then the cycle progresses.

interact once and die
otherwise stick around

interact once and die
otherwise decay

interact many times
and decay
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System Properties: Oscillation Parameters

r = 0.1 r = 10.0

0
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0 10000 20000 30000 40000 50000 60000

0

50

100

150

0 10000 20000 30000 40000 50000 60000

ε = 0.5, η = 0.0001

ε = 0.05, η = 0.0001 ε = 0.05, η = 0.01

ε = 0.5, η = 0.01

η
ε
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0 10000 20000 30000 40000 50000 60000
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0
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80

0 10000 20000 30000 40000 50000 60000

0

20

40

60

80

0 10000 20000 30000 40000 50000 60000

The constitutive rate ε (together with the degradation rate) determines 
oscillation amplitude, while the inhibition rate η determines oscillation frequency. 

We can view the interaction rate r as a measure of the volume (or temperature) 
of the solution; that is, of how often transcription factors bump into gates. 
Oscillation frequency and amplitude remain unaffected in a large range of 
variation of r. 
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Repressilator in SPiM

valvalvalval dkdkdkdk = 0.001 = 0.001 = 0.001 = 0.001 (* Decay rate *)(* Decay rate *)(* Decay rate *)(* Decay rate *)

valvalvalval etaetaetaeta = 0.001= 0.001= 0.001= 0.001 (* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)(* Inhibition rate *)

valvalvalval cstcstcstcst = 0.1= 0.1= 0.1= 0.1 (* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)(* Constitutive rate *)

let let let let tr(p:chantr(p:chantr(p:chantr(p:chan()) = ()) = ()) = ()) = 

do !p; do !p; do !p; do !p; tr(ptr(ptr(ptr(p))))

or or or or delay@dkdelay@dkdelay@dkdelay@dk

let let let let neg(a:channeg(a:channeg(a:channeg(a:chan(), (), (), (), b:chanb:chanb:chanb:chan()) =()) =()) =()) =

do ?a; do ?a; do ?a; do ?a; delay@etadelay@etadelay@etadelay@eta; ; ; ; neg(a,bneg(a,bneg(a,bneg(a,b))))

or or or or delay@cstdelay@cstdelay@cstdelay@cst; (; (; (; (tr(btr(btr(btr(b) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b))))))))

(* The circuit *)(* The circuit *)(* The circuit *)(* The circuit *)

valvalvalval bndbndbndbnd = 1.0= 1.0= 1.0= 1.0 (* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)(* Protein binding rate *)

new new new new a@bnda@bnda@bnda@bnd: : : : chanchanchanchan() () () () 

new new new new b@bndb@bndb@bndb@bnd: : : : chanchanchanchan() () () () 

new new new new c@bndc@bndc@bndc@bnd: : : : chanchanchanchan()()()()

run (run (run (run (neg(c,aneg(c,aneg(c,aneg(c,a) | ) | ) | ) | neg(a,bneg(a,bneg(a,bneg(a,b) | ) | ) | ) | neg(b,cneg(b,cneg(b,cneg(b,c))))))))
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System Properties: Fixpoints

0
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0 5000 10000

b c d ea

neg(a,b) | neg(b,c) | neg(c,d) | neg(d,e)  
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b c d ea
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A sequence of neg
gates behaves as 
expected, with 
alternating signals, 
(less “Booleanly”
depending on 
attenuation).

Now add a self-loop 
at the head. Not a 
Boolean circuit!

No more alternations, 
because… each gate 
is at its fixpoint. 

unstable all low!
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Repressilator ODE Model and Simulation

d[X]

dt
= α0 +

α +α1[PY]n

K n +[PY]n
− k[X],  

d[PX]

dt
= β{[X]−[PX]}

d[Y]

dt
= α0 +

α +α1[PZ]n

K n +[PZ]n
− k[Y],  

d[PY]

dt
= β{[Y]−[PY]}

d[Z ]

dt
= α0 +

α +α1[PX]n

K n +[PX]n
− k[Z],  

d[PZ]

dt
= β{[Z]−[PZ]}

Z PZ

Y PY

X PX

φ

φ

φφ

φ

φ
RNA

RNA

RNA

Bruce E Shapiro
Cellerator



2005-09-15 73

Guet et al.: D038/lac-

TetR

tet lac

LacI

cI

λλλλcI

gfp

GFP
IPTGaTc

experiment:
aTc - + - +
IPTG - - + +
GFP - + - -
(LacI - + - -)

neg(TetR,TetR) | neg(TetR,LacI) | neg(LacI,λcI) | neg(λcI,GFP)

PT PL2PT Pλλλλ
-

aTc -
IPTG -
GFP -

aTc +
IPTG -
GFP +

GFP!

aTc -
IPTG +
GFP -

aTc +
IPTG +
GFP -

r=1.0, ε=0.1, h=1.0, δ=0.001

IPTG de-represses the lac 
operon, by binding to the lac
repressor (the lac I gene 
product), preventing it from 
binding to the operator.

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler, 
1996, Science, May 2002, 1466-1470.

We can model an inducer like 
aTc as something that 
competes for the 
transcription factor.
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Guet et al.

TetR

tet lac

LacI

cI

λλλλcI

gfp

GFP
IPTGaTc

PT PL2PT Pλλλλ
-

Combinatorial Synthesis of Genetic Networks, Guet, Elowitz, Hsing, Leibler, 
1996, Science, May 2002, 1466-1470.

They engineered in E.Coli all genetic circuits with four single-
input gates; such as this one:

Then they measured the GFP output (a fluorescent protein) in presence or 
absence of each of two inhibitors (aTc and IPTG). 

The output of some 
circuits did not seem 
to make any sense…

Here “1” means “high brightness” and “0” means “low brightness” on a 
population of bacteria after some time. (I.e. integrated in space and time.) 

Experiment:

aTc 0101

IPTG 0011

GFP 0100
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Further Building Blocks

a p()

negp

Negp Gate

(ε,η)
negp(a,(ε,η),p) =

?a. τη. negp(a,(ε,η),p) + 

τε. (p() | negp(a,(ε,η),p)) 

regulatory

input product

rates

product generation

interaction

rtr(b,r) = 

!b. rtr(b,r) + 

!r. 0 + 

τδ. 0 degradation

repressible factor

binding

repressioninteraction

delay

rep(r) = ?r. rep(r) repressor

arbitray amounts of..

b

r

rtr(b,r)
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D038/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2PT Pλ

-

D038/lac-
Experiment:

aTc 0101

IPTG 0011

GFP 0100

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6

PT = (εεεε1, ηηηη1) PL
2 = (εεεε2, ηηηη2) Pλ

- = (εεεε3, ηηηη3)

tet = negp(TetR, PT, rtr(TetR,aTc))

lac = negp(TetR, PT, rtr(LacI,IPTG))

cI = negp(LacI, PL
2, tr(lcI))

gfp = negp(lcI, Pλ
-, tr(GFP))

D038lac- =  tet | lac | cI | gfp |  rep(aTc) | rep(IPTG)

repressors

(when present)

promoters

genes

molecules

Naïve “Boolean” analysis would 

suggest GFP=0.5 (oscillation) 

because of self-loop.

GFP=0 there is consistent only 

with (somehow) the head loop 

setting TetR=LacI=0. But in that 

case, aTc should have no effect (it 

can only subtract from those 

signals) but instead it sets GFP=1.

Hence we need to 
understand better the 
“dynamics” of this network.
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Simulation results for D038/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2PT Pλ

-

D038/lac-

Experiment:

aTc 0101

IPTG 0011

GFP 0100

r=1.0, ε=0.1, h=1.0, δ=0.001

0
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40

60

80

100

120

140

0 5000 10000 15000 20000

r = 1.0,  ε = 0.1,  η = 0.25 (PT),  η = 1.0 (PL
2, Pλ

-),  δ = 0.001

GFP 

LacI

lcI

TetR

aTc = 0, IPTG = 0

aTc = 1, IPTG = 0

aTc = 0, IPTG = 1

aTc = 1, IPTG = 1

GFP

The fixpoint effect (all signals set 

very low) can explain this.

The fixpoint effect can explain this 

(all signals set very low).

The, aTc can destabilize the fixpoint, 

explaining GFP high (oscillating) 

Then, aTc can destabilize the fixpoint, 

explaining GFP high (oscillating) 
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D016/lac-

channels TetR:r1, LacI:r2, lcI:r3, GFP:r4, aTc:r5, IPTG:r6

PT = [εεεε1, ηηηη1] PL
2 = [εεεε2, ηηηη2] Pλ

- = [εεεε3, ηηηη3] PL
1 = [εεεε4, ηηηη4]

tet = negp[TetR, PT, rtr[TetR,aTc]]

lac = negp[LacI, PL
1, rtr[LacI,IPTG]]

cI = negp[LacI, PL
2, tr[lcI]]

gfp = negp[lcI, Pλ
-, tr[GFP]]

D016lac- =  tet | lac | cI | gfp |  rep[aTc] | rep[IPTG]

repressors

promoters

genes

D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2 Pλ

-PL
1

Experiment:

aTc 0101

IPTG 0011

GFP 1000 One theory: aTc prevents 
the self-inhibition of tet, so 
that a very large quantity of 
TetR is produced. That then 
overloads the overall 
degradation machinery of 
the cell, affecting the rest 
of the circuit.

How can aTc

affect the result??

Even so, how can 

GFP be high here?

Even the fixpoint
explanation fails here, 
unless we assume that 
the lac gate is 
operating in its 
instability region.
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Simulation results for D016/lac-

0

50

100

150

0 50000 100000

0

50

100

150

0 50000 100000

aTc = 0 (δ = 0.001), IPTG = 0
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0
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100
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0 50000 100000

aTc = 0 (δ = 0.001), IPTG = 1 aTc = 1 (δ = 0.00001), IPTG =1

r = 1.0

ε = 0.1

η = 0.01

A B

C D

E
GFP 

LacI

lcI

TetR

aTc = 1 (δ = 0.00001), IPTG = 0

δ = 0.005 aTc = 0,  IPTG = 0

GFP

The fixpoint effect, in 

instability region, explains 

this: GFP high because 

wildly oscillating.

Experiment:

aTc 0101

IPTG 0011

GFP 1000

The fixpoint effect, in 

instability region, explains 

this: GFP high because 

wildly oscillating.

Overloading of 

degradation machinery, 

induced by aTc, can 

reinstate the fixpoint

regime.

Overloading of 

degradation machinery, 

induced by aTc, can 

reinstate the fixpoint

regime.
D016/lac-

TetR

tet lac

LacI

cI

lcI

gfp

GFP

IPTGaTc

PT PL
2 Pλ

-PL
1
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What was the point?

● Deliberately pick a controversial/unsettled example to test the 
methodology.

● Show that we can easily “play with the model” and run simulations.

● Get a feeling for the kind of subtle effects that may play a role. 

● Get a feeling for kind of analysis that is required to understand the 
behavior of these systems.

● In the end, we are never “understanding” anything; we are just building 
theories/models that support of contradict experiments (and that
suggest further experiments).
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3. The Membrane Machine

Molecular transport and 
transformation through 
dynamic compartment 
fusion and fission.

Fusion

Fission

Well, what is all that for?
“Given the complicated pathways that have 
evolved to synthesize them, it seems likely 

that these [modified proteins] have 
important functions, but for the most part 
these functions are not known” [MBC p.609]

Very far from 
the atoms.

Taken from

MCB CD

} The Instruction Set

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.
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Membranes are Oriented 2D Surfaces

5nm5nm
~60 atoms

Cytosol (H2O)

Extracellular
Space (H2O)

Lipid Bilayer
Self-assembling
Largely impermeable
Asymmetrical (in real cells)
With embedded proteins
A 2D fluid inside a 3D fluid!

Embedded 
membrane proteins

Channels, Pumps
(selective, directional)

Hydrophilic head

Hydrophobic tail

Lipid
Diffusion (fast)

Flip
(rare)

(Not spontaneous)
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Membrane Fusion
Positive curvature to 
Negative curvature 
transition in 3D

Aggressive fusion 
(virus)

Cooperative fusion
(vesicle)

Taken from
Tamm Laboratory

By unknown mechanisms, 
the exoplasmic leaflets 
of the two membranes 

fuse” [MCB p745]

“Fusion of the two 
membranes immediately 
follows prefusion, but 

precisely how this occurs is 
not known” [MCB p742]

Cell membrane

Virus membrane
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Membrane Fission

Movie by Allison Bruce

Vesicle 
Formation

Cytokinesis 
(Mitosis)

Negative curvature to 
Positive curvature 
transition in 3D

“Nonetheless, the actual 
process whereby a segment of 
phospholipid bilayer is ‘pinched 

off’ to form a pit and 
eventually a new vesicle is still 
not understood” [MCB p.746]
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Membrane Algorithms

H.Lodish et al. 
Molecular Cell Biology. 
fourth Edition p.730.

LDL-Cholesterol 
Degradation

Viral Replication

Protein Production 
and Secretion

Voet, Voet & Pratt
Fundamentals of Biochemistry
Wiley 1999. Ch10 Fig 10-22.

Adapted from: B.Alberts et al. 
Molecular Biology of the Cell 

third edition p.279.
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Receptor-Mediate Degradation Pathway

As a “shapshot” diagram

● LDL-Cholesterol Degradation 
– A cast of many thousands (molecules) just to get one 

molecule from A to B.

– Membranes are key to the algorithm, we want to model 
them, not their individual millions of molecules.

● Some very fancy chemistry
– But its “purpose” is to reliably implement a specific 

sequence of discrete steps.

Lipid bilayer

Taken from
MCB p.730
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Receptor-Mediate Degradation Pathway 

As a state transition diagram

p

Target particle 

(e.g. LDL Cholesterol)

Ligand Receptor

p p

p

Bind Endo

Merge p

Sorting vesicle

Unbind p

low pH

p

Depoly

Sort Exo p

Lysosome

Merge p

Enzymes
high pH

Degrade

Cell

Several hundred round-trips 

in lifespan of receptor

Clathrin
Clathrin coat
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B
itonal d

iagram
s

Membrane Orientation

Membranes are closed non-intersecting 
curves, with an orientation(1). 

Each membrane has two faces. A cytosolic
(~inner) face and an exoplasmic (~outer) face. 
Nested membranes alternate orientation.
(E.g. cytosolic faces always face each other, 
by definition, or by fusion/fission dynamics) 

This alternation is illustrated by using two 
tones: blue (cytosol(2)) and white (exosol(3)). 
Bitonal diagrams.

Double membranes (e.g. the nuclear 
membrane) gives us blue-in-blue components.

(1) A membrane is built from a phospholipid bilayer that is asymmetrical. Moreover, all real membranes are heavily 
sprinkled with proteins: “each type of integral membrane protein has a single specific orientation with respect to 
the cytosolic and exoplasmic faces of a cellular membrane, and all molecules of any particular integral membrane 
protein share this orientation. This absolute asymmetry in protein orientation confers different properties on the 
two membrane faces.” MCB p162.
(2) Short for Cytoplasmic Solution. (3) Short for Exoplasmic Region (I am making this one up).

phospholipid bilayer

membrane proteins
(consistently oriented)

cytosol

exosol

~exosol

cytosol

~cytosol

cytosolic face

cytosolic face
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Contiguous Membranes have Opposite Orientation

True “by construction”: look at the basic 
biological operations that increase the number 
of membranes in a system:

Endo

opposite 
orientation

Mito

opposite 
orientation
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Bitonal Structure

Bitonality
Blue and white areas alternate.

Bitonal Invariant (~ Orientation Invariant)
Bitonality and subsystem coloring is preserved 
by reactions. I.e., blue and white fluids 
never mix and never flip color.

Bitonal Duality 
Reactions come in complementary-tone versions.

The cell maintains a strong compartment-based 
separation between inside fluids and outside fluids
even when incorporating foreign material.

Nucleus

Chloroplasts

Cytosol

E.R.

Golgi
Mitochondria

Lysosomes
Vacuoles
Transport

Exosol

Evolutionary 
explanations
of bitonal 
structure

54%vol

6%vol

3%vol, 
#900

2%vol, #1700

9%vol

6%vol

Mitochondria 
acquisition

Mitochondria 
to Chloroplasts

Pre-Eukarya
to Eukarya
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Membrane Reactions

Switch

Membrane
System

(Symmetric by 90o

rotation.)

What reactions
“make sense”
biologically?

Reactions that “make 
sense” from a local, 
molecular viewpoint

??
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Global Membrane Reactions

Mito

Mate

Endo

Exo

(Fission)

(Fusion)

(Fission)

(Fusion)

Reactions that “make 
sense” from a descriptive, 

global viewpoint

Same
Local
View!

Switch
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Mito/Mate by 3 Endo/Exo

PPPP QQQQ PPPP QQQQ

PPPP QQQQPPPP QQQQ

PPPP QQQQ

PPPP QQQQ PPPP QQQQ

EndoEndoEndoEndo
ExoExoExoExo

EndoEndoEndoEndo
ExoExoExoExo

EndoEndoEndoEndo
ExoExoExoExo
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Ex: Autophagic Process
Lysosome and target don’t just merge.

Lysosome
Target

Enzymes E.R.

Biologically, Mito/Mate 

clearly happens. However, 

weird sequences of 

Endo/Exo are also common.

1 2

3 4

5? 6?

7
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Non-Reactions

Some global reactions are ruled out by bitonality, 
and by locality:

a

b

a

c

b a b

c

Out
In

Open
Wrap

a

b

Violate bitonality.

Non implementable by “local” membrane operations.

Not observed (except gradual Open during “digestion” or “lysis”).

Happen to be the Ambient Calculus operations :-(

Flips tone

Flips tone
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The Membrane Machine “Instruction Set”

P

Pino

PhagoR R

Arbitrary 
subsystem

Zero case

One case
Exo

Endo
P Q Q

P Q

Q Q

Q Q

Endo:
special
cases

Fusion

Fission

P Q P Q

DripP P

BudP PR R

One case

Arbitrary 
subsystem

Mate

Mito

P Q

Zero case

Fusion

Fission

Mito:
special
cases
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T-Exo

T-Endo

… in 3D

S-Exo

S-Endo

Fusion

Fission

Fission

Fusion

S-Mito

S-Mate

T-Mito

T-Mate

Fission

Fusion

Fusion

Fission
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Notations for the Membrane Machine

● “Snapshot” diagrams
– In biology literature.

● P-Systems
– G.Paun uses ideas from the theory of 

grammars and formal languages to 
model “Membrane Computing” (book 
2002).
http://psystems.disco.unimib.it/.

● BioAmbients
– An extension of BioSPI along 

Ambient Calculus lines (with more 
bio-relevant mobility primitives) to 
model dynamic compartments.

● Brane Calculi
– Computation on the membrane…



Brane Calculi

Computation “on”
the membrane
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Brane Calculi

P,Q  ::= k | PmQ | !P | σhPi nests of membranes

σ,τ ::= 0 | σ|τ | !σ | a.σ combinations of actions

a ::= 1 | … (fill in as needed)

branes

systems

actions

N.B. Restriction (νn) could be added to both systems and branes. It usually would originate in branes, but would extrude to whole 
systems.

Pσ

membrane

contents

Pσ

τ
membrane

patches

membrane
patches

σhPi σ|τhPi a.σ|τ = (a.σ)|τ

1D fluids (σ) inside a 2D fluid (P)
TWO commutative monoids instead of 

ONE of normal process calculi
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Congruence 7777 and Reaction }}}}

P7P’ ∧ P’}Q’ ∧ Q’7Q ⇒ P}Q 

C
on

gr
ue

nc
e

Reaction is up 
to congruence 

PmQ 7 QmP 

Pm(QmR) 7 (PmQ)mR 

Pmk 7 P

!P 7 Pm!P etc.

0hki 7 k

P7Q ⇒ PmR 7 QmR

P7Q ⇒ !P 7 !Q

P7Q ∧ σ7τ ⇒ σhPi 7 τhQi

Froth/Fizz

σ|τ 7 τ|σ

σ|(τ|ρ) 7 (σ|τ)|ρ

σ|0 7 σ

!σ 7 σ|!σ    etc.

1.σ 7 σ

σ7τ ⇒ σ|ρ 7 τ|ρ

σ7τ ⇒ !σ 7 !τ

σ7τ ⇒ a.σ 7 a.τ

Inaction

Plentitude

F
lu
id
it
y

Units

System Brane

P}Q ⇒ PmR } QmR 

P}Q ⇒ σhPi } σhQi

Reactions in 
solution 

This is the whole 
semantics, except 
for the effects of 
individual actions.
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“Determinization”

Endo
P P

Pino∅∅∅∅ ∅∅∅∅

Phago

Mito
P Q P Q

DripP P∅∅∅∅ ∅∅∅∅

BudP P

P P

Q Q

Arbitrary 
subsystem

Zero case

One case

Zero case

One case

Arbitrary 
subsystem

Exo

Mate

Endo

Mito
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G(ρ).τ

JI(ρ).τ

Pσ

τ

ρ

J.σ

Brane Reactions

a ::= … | Jn | JI
n(ρ) | Kn | KI

n | G(ρ) phago J, exo K, pino Gactions

P
Q

Phago Pρ σ'

τ

Q

P
Q

Exo

K.σ
KI.τ

P
Q

σ τ

PinoσP

Old “spontaneous” endo splits into 
phagocytosis (phago, often still 
pronounced endo) and pinocytosis (pino).

σ' τ'

τ'σ'

σ

τ'

τ'
σ'

coordination tags
sometimes omitted
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Exo

Brane Reactions (Cartoons)

P
Q

P
Q

P

P
Q

Phago P
Q

PinoP

P
Q

P

P
Q

A Turing-Complete language 
[Busi Gorrieri]
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Phago Jn.σ|σ'hPi m JI
n(ρ).τ|τ'hQi } τ|τ'hρhσ|σ'hPiimQi

Exo KI
n.τ|τ'hKn.σ|σ'hPimQi } P m σ|σ'|τ|τ'hQi

Pino G(ρ).σ|σ'hPi } σ|σ'hρhkimPi

…

N.B.: the parity of nesting of P and Q is preserved; 
this makes the reactions preserve bitonality.

B&R p1 m p1(p2)�q1(q2).α|σhp2 m Pi } q1 m α|σhq2 m Pi

(multiset rewriting, inside and outside membranes)
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N.B.: in Phago (and Pino), one could perhaps require r to be, conservatively, a piece 
of t, by a non-linear rewrite:

CPhago  Jn.σ|σ'hPi m JI
n(ρ).τ|τ'|ρhQi } τ|τ'hρhσ|σ'hPiimQi

…
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Derivable Reactions (Cartoons)

Q Mate QPP

BudP
Q Q

P

P Drip P

A Decidable-Termination language
[Busi Gorrieri]
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Abbreviations: Mate

Mate maten.σ = Jn.Kn’.σ
mateIn.τ = JI

n(KI
n’.Kn”).KI

n”.τ

Q

JI
n(KI

n’.Kn”).KI
n”.τ

τ'Pσ'

Jn.Kn’.σ

Q

KI
n”.τ

Pσ'
Kn’.σ

KI
n’.Kn”

τ'

Exo Q

KI
n”.τ

Pσ'

σ Kn”

τ' Exo QPσ'
τ'

σ τ

Q

mateI
n.τ

τ'

maten.σ

Mate QPσ'
τ'

σ τ

Pσ'

Phago
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Abbreviations: Bud

Bud
P Qσ'τ'

budn.σ

budI
n(ρ).τ

Bud budn.σ = Jn.σ
budI

n(ρ).τ = G(JI
n(ρ).Kn’).KI

n’.τ

P Qσ'
τ' Jn.σ

KI
n’.τ

JI
n(ρ).Kn’

Qτ'

KI
n’.τ

Pσ'

σ

ρ

Kn’

Exo
Qτ'

τ

Pσ'

σ

ρ

Q

τ

τ'Pσ'
σ

ρ

A budding version of old “spontaneous” mito, to 
avoid arbitrary splits. Follows the pattern of 
inverse-mate.

Pino
P Qσ'τ'

Jn.σ

G(JI
n(ρ).Kn’).KI

n’.τ

Phago
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Abbreviations: Drip

P Dripσ'

dripn(ρ).σ

Drip dripn(ρ).σ = G(G(ρ).Kn).KI
n.σ

σ

σ'ρ P

A zero-expelled-membranes version of old 
“spontaneous” mito, to avoid arbitrary 
splits. Follows the pattern of inverse-mate.

σ'

G(G(ρ).Kn).KI
n.σ

PinoPino

Kn

ρ

KI
n.σ

Pσ'

KI
n.σ

Pσ'

G(ρ).Kn

P

Exo

σ

Pσ'
ρ
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Viral Reproduction

[MBC p.279]
annotated

Phago

Mate

Exo

Drip

Exo

Bud

RNA

Replication

Translation

Translation

Assembly

Nucleus

E
n
d
o
s
o
m
e

Disassembly

Virus

RNA

Capsid

Membrane

Envelope protein

Endoplasmic

Reticulum

(via Golgi)

RNA

Budding

Vesicle

Nucleocapsid}

Cytosol

Infection Replication Progeny
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Ex: Viral Infection

J.Khnucapim !JI(mate)h!mateI|!KIhkimcytosoli }Phago

!JI(mate)hmatehKhnucapiim!mateI|!KIhkimcytosoli }Mate

!JI(mate)h!mateI|!KIhKhnucapiimcytosoli }Exo

!JI(mate)h!mateI|!KIhkimnucapmcytosoli

endosome

virus cell

membrane

endosome

endosome

endosome

vesiclemembrane

membrane

membrane
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Ex: Viral Progeny

Assume:

nucap m cytosol }} nucapn m envelope-vesiclem m cytosol’
by available cellular machinery

Then:

!KIhK.budI(J.K)hkim!bud|σhvRNAimcytosol”i }Exo

!KI|budI(J.K)h!bud|σhvRNAimcytosol”i }Bud

!KIhcytosol”i m J.Khnucapi

nucap

cell

envelope-vesicle

virus

nucapenvelope

cell
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Brane-Molecule Reactions (Cartoons)

With molecule multisets p,q:

B&Rp2

p1

q2

q1
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Molecules

a ::= … | p1(p2) � q1(q2) bind&releaseactions

P,Q ::= … | m mBM   molecules

p,q ::= m1m…mmk molecule multisets

systems

B&R
σ

p1(p2) � q1(q2).β

p2   P σ

β

q2   Pp1 q1

This single operation can essentially account for the whole Protein 
Machine, including its interactions with membranes. Except that, one must 
add some form of protein complexation, either as in BioSPi by adding 
restriction, or as in κ-calculus by adding complex molecules.

We now add molecules to the model:
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…

B&R p1 m p1(p2)�q1(q2).α|σhp2 m Pi } q1 m α|σhq2 m Pi

(multiset rewriting, inside and outside membranes)

Simple bindings and releases - “k(k)” is omitted:

m(k)� bind out �m(k)      release out
k(m)� bind in �k(m)      release in
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Ex: Molecular Pumps and Channels

ATP
ADP

H+

H+
H+

Cl–

Proton Pump

Ion ChannelCl–

Proton AntiporterH+Na+ H+ Na+

E.g. plant vacuole (white).

ATP charges up the vacuole 
with H+. Several other pumps 
work off that charge.

H+ impermeable

Pi

H+

A plant vacuole membrane has all those things on it. 
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…

ProtonPump = ! ATP(k) � ADPmPi(H+mH+)

IonChannel =  ! Cl–(H+) � k(H+mCl–)

ProtonAntiporter = ! Na+(H+) � H+(Na+)

PlantVacuole = 

ProtonPump | IonChannel | ProtonAntiporter hki

Hence this reaction notation, �, is “like” chemical reaction 
notation, 567, but talking about both sides on a membrane at once.

(N.B. no built-in conservation of mass in either case.)
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Special Cases of B&R

Chemical reaction catalysis (inside a compartment)

p 56667 q   @ ! p(k) � q(k)hi

p 6<<<9 q   @ p 56667 q m q 56667 p

E.g. peptide bond between two aminoacids R1 R2:
R1-COOH m H2N-R2 56667 R1-CO-HN-R2 m H2O

Compartment conditions (on the membrane of a compartment)

p5J7q @ ! k(p) � k(q) 

p5J7q|σhPi Condition affecting P 

E.g. a condition-driven reaction:
p5J7q|σhpi } p5J7q|σhqi
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Ex: Virus Replication

Drip

vRNA

Replication

Translation

Translation

Assembly

Nucleus
Endoplasmic

Reticulum

vRNA

Cytosol

Vesicle

Disassembly

Nucleocapsid

(See paper for the other two vRNA pathways)

nucap m cytosol }} nucapn m envelope-vesiclem m cytosol’

ER @ !vRNA(k)�vRNA(k). drip(K.budI(J.K))hNucleusi

envelope-vesicle

exo to cell membrane

nucap budding receptor

virus membranewhen 
triggered 
by vRNA
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ExoExo

Exo

Exo

“On Brane” vs. “In Brane”

P
Q

P
Q

P
Q Q

P

P Q
P

Q P Q

Original “on brane”
Exo of Brane Calculus

“In brane” encoding 
(e.g. in BioAmbients 
or SMBL) goes wrong

“Ball bearing”
encoding; best we can 
do “in brane”

● One cannot easily represent the Exo reaction in BioAmbients or any such 
compartment-based calculus, nor can one easily add it as a new primitive!

● But we can add BioAmbients-like In/Out out to Brane Calculi if we want to.

Awkward encoding. And all kinds of things can go wrong in the 
intermediate state.
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Adding Frills to the Framework

● So far, purely combinatorial:
– No name binding, channel creation, communication…
– Closer to combinatorial flavor of protein interactions
– Goes a long way: do not try to extend needlessly.

● But one can easily add all that, and more:
– CCS-style communication 

●Diffusion of molecules on cellular membrane
– BioAmbients-style communication 

●Diffusion of molecules across cellular membrane
– BioAmbients-like mobility 

●Non-bitonal
– π-style restriction

● We have a framework where we can plug&play a rich set of 
interactions, while supporting compartments.



Towards the 
Million-Line Model
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From Chemical Reactions to ODE’s

-11F

1E

1D

-1-12C

1-1B

-1-1A
r4r3r2r1N

d[A]/dt = -v1 - v2
d[B]/dt = -v1 + v4
d[C]/dt = 2⋅v1 - v2 - v3
d[D]/dt = v2
d[E]/dt = v3
d[F]/dt = v3 - v4

vi(x,ei,ki) 

Write the coefficients 
by columns

Read the concentration 
changes from the rows

x: chemical species

[-]: concentrations

v: rate laws

k: kinetic parameters

N: stoichiometric matrix

e: catalysts (if any)

x

reactions

sp
ec

ie
s

A

B C

D

EF

C
k1

k2

k4
k3

r1: A+B →k1 C+C

r2: A+C →k2 D

r3: C →k3 E+F

r4: F →k4 B

k4⋅[F]v4

k3⋅[C]v3

k2⋅[A]⋅[C]v2

k1⋅[A]⋅[B]v1

v

Concentration 
changes

Stoichiometric
matrix

Rate laws

dt
= N⋅⋅⋅⋅v

d[x]
Read the rate laws 
from the columns

E.g. d[A]/dt = 
-k1⋅[A]⋅[B] - k2⋅[A]⋅[C]

Stoichiometric
Matrix
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From Chemical Reactions to Processes

A = ?v1k1.(C|C) + ?v2k2.D + ?a

B = !v1k1 + ?b

C = !v2k2 + τk3(E|F) + ?c

D = 0 + ?d

E = 0 + ?e

F = τk3.B + ?f

interactions

pr
oc
es
se
s

(Rate laws are implicit in 
stochastic semantics)

-11F

1E

1D

-1-12C

1-1B

-1-1A
r4r3r2r1N

A

B C

D

EF

C
k1

k2

k4
k3

For binary reactoins, first species in 
the column does an input and 
produces result, second species does 
an ouput, For unary reactions, 
species does a tau action and 
produces result. No ternary 
reactions.

Read the process 
interactions from the rows

Add a barb 
for counting 
and plotting

Write the coefficients 
by columns

r1: A+B →k1 C+C

r2: A+C →k2 D

r3: C →k3 E+F

r4: F →k4 B
Stoichiometric

Matrix
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Stoichiometric Matrices Blow Up

● We can translate Chemistry to ODE’s or Processes
– It is standard to go from chemical equations to ODE’s via a stoichiometric
matrix.

– It is similarly possible to go from chemical equations to processes via a 
stoichiometric matrix.

● But there is a better way:
– Stoichiometric matrices blow-up exponentially for biochemical systems
(unlike for ordinary chemical systems) because proteins have combinatorial 
state and complexed states are common.

– To avoid this explosion, we should describe biochemical systems 
compositionally without going through a stochiometric matrix (and hence 
without ODE’s).
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Complexes: The ODE Way

A 69 Ap

B 69 Bp

C 69 Cp

ABC 69 ApBC

ABC 69 ABpC

ABC 69 ABCp

ApBC 69 ApBpC

ApBC 69 ApBCp

ABpC 69 ApBpC

ABpC 69 ABpCp

ABCp 69 ApBCp

ABCp 69 ABpCp

ApBpC 69 ApBpCp

ApBCp 69 ApBpCp

ABpCp 69 ApBpCp

v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

ApBpCp

ABpCp

ApBCp

ApBpC

ABCp

ABpC

ApBC

ABC

v24v11v10v9v8v7v6v5v4v3v2v1N

ABC

ApBC

ABpC

ABCp
ApBpC

ApBCp
ABpCp
ApBpCp

2n x 2n(2n-1)

2n
ABC1

2n
domain
reactions

complex
species reactions

(twice number of 
edges in n-dim 
hypercube)

2n(2n-1)

A, B, Cn

domains

Stoichiometric
Matrix

The matrix is very sparse, so 
the corresponding ODE system 
is not dense. But it still has 2n

equations, one per species, plus 
conservation equations 
([ABC]+[ApBC]=constant, etc.).

System description is 
exponential in the number 
of basic components.
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Complexes: The Reactive System Way

A 69 Ap

B 69 Bp

C 69 Cp

2n

A  = ?kn;Ap Ap = ?ph;A

B  = ?kn;Bp Bp = ?ph;B

C  = ?kn;Cp Cp = ?ph;C

A | B | C

2n

When the local domain reactions are not independent, 
we can use lateral communication so that each 
component is aware of the relevant others.

n

(Its “run-time” behavior or 
analysis potentially blows-up just 
as in the previous case, but its 
description does not.)

System description is 
linear in the number of 
basic components.

domain
reactions

processes



Model Validation
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Model Validation: Simulation

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
– Can compute concentrations and reaction times for biochemical networks.

● Stochastic Process Calculi
– BioSPi [Shapiro, Regev, Priami, et. al.]

●Stochastic process calculus based on Gillespie.
– BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]

●Extension of BioSpi for membranes.
– Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]

●Original analysis of lymphocyte rolling in blood vessels of different diameters.
– Case study: Lambda Switch [Celine Kuttler, IRI Lille]

●Model of phage lambda genome (well-studied system).
– Case study: VICE [U. Pisa]

●Minimal prokaryote genome (180 genes) and metabolism of whole VIrtual CEll, in 
stochastic π-calculus, simulated under stable conditions for 40K transitions.

● Hybrid approaches
– Charon language [UPenn]

●Hybrid systems: continuous differential equations + discrete/stochastic mode 
switching.

– Etc.
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Model Validation: “Program” Analysis

● Causality Analysis
– Biochemical pathways, (“concurrent traces”
such as the one here), are found in biology 
publications, summarizing known facts.  

– This one, however, was automatically 
generated from a program written in BioSpi 
by comparing traces of all possible 
interactions. [Curti, Priami, Degano, Baldari]

– One can play with the program to investigate 
various hypotheses about the pathways.

● Control Flow Analysis
– Flow analysis techniques applied to process 
calculi.

– Overapproximation of behavior used to 
answer questions about what “cannot 
happen”.

– Analysis of positive feedback transcription 
regulation in BioAmbients [Flemming Nielson].

● Probabilistic Abstract Interpretation
– [DiPierro Wicklicky].
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Model Validation: Modelchecking

● Temporal
– Software verification of biomolecular systems (NA pump)

[Ciobanu]

– Analysis of mammalian cell cycle (after Kohn) in CTL.
[Chabrier-Rivier Chiaverini Danos Fages Schachter]

●E.g. is state S1 a necessary checkpoint for reaching state S2?

● Quantitative: Simpathica/xssys
[Antioniotti Park Policriti Ugel Mishra]

– Quantitative temporal logic queries of human Purine 
metabolism model.

● Stochastic: Spring
[Parker Normal Kwiatkowska]

– Designed for stochastic (computer) network analysis
●Discrete and Continuous Markov Processes.
● Process input language.
●Modelchecking of probabilistic queries. 

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))
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What Reactive Systems Do For Us

We can write things down precisely
– We can modularly describe high structural 

and combinatorial complexity (“do 
programming”).

We can calculate and analyze
– Directly support simulation.
– Support analysis (e.g. control flow, causality, 

nondeterminism).
– Support state exploration (modelchecking).

We can visualize
– Automata-like presentations.
– Petri-Net-like presentations.
– State Charts, Live Sequence Charts [Harel]

●Hierarchical automata.
●Scenario composition.

We can reason
– Suitable equivalences on processes 

induce algebraic laws.
– We can relate different systems (e.g. 

equivalent behaviors).
– We can relate different abstraction 

levels.
– We can use equivalences for state 

minimization (symmetries).

Disclaimers
– Some of these technologies are basically 

ready (medium-scale stochastic simulation and 
analysis, medium-scale nondeterministic and 
stochastic modelchecking).

– Others need to scale up significantly to be 
really useful. This is (has been) the challenge 
for computer scientists.

Many approaches, same basic philosophy, tools being built:
⇒ Proc. Computational Methods in Systems Biology [2003-2005]



Conclusions
“The data are accumulating and 
the computers are humming, 
what we are lacking are the 
words, the grammar and the 
syntax of a new language…”

D. Bray (TIBS 22(9):325-326, 1997)

“The most advanced tools for 
computer process description 
seem to be also the best tools 
for the description of 
biomolecular systems.”

E.Shapiro (Lecture Notes)

Q:

A:
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Papers
BioAmbients

a stochastic calculus with compartments.
Brane Calculi

process calculi with computation “on” the membranes, not inside them.
Bitonal Systems

membrane reactions and their connections to “local” patch reactions.
Abstract Machines of Systems Biology

the abstract machines implemented by biochemical toolkits.

www.luca.demon.co.uk/BioComputing.htm


